Online Credit Payment Fraud Detection via Structure-Aware Hierarchical Recurrent Neural Network

被引:0
|
作者
Lin, Wangli [1 ]
Sun, Li [1 ]
Zhong, Qiwei [1 ]
Liu, Can [1 ]
Feng, Jinghua [1 ]
Ao, Xiang [2 ]
Yang, Hao [1 ]
机构
[1] Alibaba Grp, Hangzhou, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online credit payment fraud detection plays a critical role in financial institutions due to the growing volume of fraudulent transactions. Recently, researchers have shown an increased interest in capturing users' dynamic and evolving fraudulent tendencies from their behavior sequences. However, most existing methodologies for sequential modeling overlook the intrinsic structure information of web pages. In this paper, we adopt multi-scale behavior sequence generated from different granularities of web page structures and propose a model named SAH-RNN to consume the multi-scale behavior sequence for online payment fraud detection. The SAH-RNN has stacked RNN layers in which upper layers modeling for compendious behaviors are updated less frequently and receive the summarized representations from lower layers. A dual attention is devised to capture the impacts on both sequential information within the same sequence and structural information among different granularity of web pages. Experimental results on a large-scale real-world transaction dataset from Alibaba show that our proposed model outperforms state-of-the-art approaches. The code is available at https://github.com/WangliLin/SAH- RNN.
引用
收藏
页码:3670 / 3676
页数:7
相关论文
共 50 条
  • [1] Relation Structure-Aware Heterogeneous Graph Neural Network
    Zhu, Shichao
    Zhou, Chuan
    Pan, Shirui
    Zhu, Xingquan
    Wang, Bin
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1534 - 1539
  • [2] Using Neural Network for Credit Card Fraud Detection
    Georgieva, Sevdalina
    Markova, Maya
    Pavlov, Velizar
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [3] Graph Neural Network for Credit Card Fraud Detection
    Liu, GuanJun
    Tang, Jing
    Tian, Yue
    Wang, Jiacun
    2021 INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SOCIAL INTELLIGENCE (ICCSI), 2021,
  • [4] SALMNet: A Structure-Aware Lane Marking Detection Network
    Xu, Xuemiao
    Yu, Tianfei
    Hu, Xiaowei
    Ng, Wing W. Y.
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) : 4986 - 4997
  • [5] A Structure-Aware Convolutional Neural Network for Skin Lesion Classification
    Thandiackal, Kevin
    Goksel, Orcun
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 312 - 319
  • [6] Hybrid Neural Network Methods for the Detection of Credit Card Fraud
    Al-Khasawneh, Mahmoud Ahmad
    Faheem, Muhammad
    Alsekait, Deema Mohammed
    Abubakar, Adamu
    Issa, Ghassan F.
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [7] A Convolutional Neural Network Model for Credit Card Fraud Detection
    Gambo, Muhammad Liman
    Zainal, Anazida
    Kassim, Mohamad Nizam
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 198 - 202
  • [8] Improving fraud detection via hierarchical attention-based Graph Neural Network
    Liu, Yajing
    Sun, Zhengya
    Zhang, Wensheng
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 72
  • [9] A Structure-Aware Relation Network for Thoracic Diseases Detection and Segmentation
    Lian, Jie
    Liu, Jingyu
    Zhang, Shu
    Gao, Kai
    Liu, Xiaoqing
    Zhang, Dingwen
    Yu, Yizhou
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (08) : 2042 - 2052
  • [10] Payment card fraud detection using neural network committee and clustering
    Bekirev A.S.
    Klimov V.V.
    Kuzin M.V.
    Shchukin B.A.
    Optical Memory and Neural Networks, 2015, 24 (3) : 193 - 200