Identification of core genes involved in the response of Apocynum venetum to salt stress based on transcriptome sequencing and WGCNA

被引:0
|
作者
Zhen, Xi [1 ,2 ]
Liu, Xuyang [3 ]
Zhang, Xiaoming [1 ]
Luo, Shujie [4 ]
Wang, Wencheng [5 ]
Wan, Tao [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Grassland Resources & Environm, Key Lab Grassland Resources, Minist Educ, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Weather Modificat Ctr, Hohhot, Inner Mongolia, Peoples R China
[3] Inner Mongolia Climate Ctr, Hohhot, Peoples R China
[4] Yangzhou Univ, Coll Plant Protect, Yangzhou, Peoples R China
[5] Jining Med Univ, Jining, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 04期
关键词
NURSING-HOME RESIDENTS; OLDER-ADULTS; NEUROPSYCHIATRIC SYMPTOMS; PSYCHOLOGICAL SYMPTOMS; DEMENTIA; PREVALENCE; INSTRUMENT; DEPRESSION; PROGRESS; DISEASE;
D O I
10.1371/journal.pone.0300277
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Apocynum venetum L. belongs to the Apocynaceae family and is a plant that is highly resistant to stress. It is important in the fields of ecology, feeding, industry and medicine. The molecular mechanism underlying salt tolerance has not been elucidated. In this study, RNA-seq based transcriptome sequencing of A. venetum leaves after 0, 2, 6, 12, 24 and 48 h of treatment with 300 mM NaCl was performed. We conducted a comprehensive analysis of the transcriptome expression profiles of A. venetum under salt stress using the WGCNA method and identified red, black, and brown as the core modules regulating the salt tolerance of A. venetum. A co-expression regulatory network was constructed to identify the core genes in the module according to the correlations between genes. The genes TRINITY_DN102_c0_g1 (serine carboxypeptidase), TRINITY_DN3073_c0_g1 (SOS signaling pathway) and TRINITY_DN6732_c0_g1 (heat shock transcription factor) in the red module were determined to be the core genes. Two core genes in the black module, TRINITY_DN9926_c0_g1 and TRINITY_DN7962_c0_g1, are pioneer candidate salt tolerance-associated genes in A. venetum. The genes in the brown module were mainly enriched in two pathways, namely photosynthesis and osmotic balance. Among them, the TRINITY_DN6321_c0_g2 and TRINITY_DN244_c0_g1 genes encode aquaporin, which is helpful for maintaining the cell water balance and plays a protective role in defending A. venetum under abiotic stress. Our findings contribute to the identification of core genes involved in the response of A. venetum to salt stress.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Identification of salt stress response genes using the Artemia transcriptome
    De Vos, S.
    Van Stappen, G.
    Sorgeloos, P.
    Vuylsteke, M.
    Rombauts, S.
    Bossier, P.
    AQUACULTURE, 2019, 500 : 305 - 314
  • [2] Transcriptome Sequencing and WGCNA Reveal Key Genes in Response to Leaf Blight in Poplar
    Wang, Ruiqi
    Wang, Yuting
    Yao, Wenjing
    Ge, Wengong
    Jiang, Tingbo
    Zhou, Boru
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [3] Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing
    Deng, Xiuling
    Wang, Dong
    Wang, Shenyuan
    Wang, Haisheng
    Zhou, Huanmin
    BIOLOGICAL RESEARCH, 2018, 51
  • [4] Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing
    Xiuling, D.
    Haisheng, W.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 231 - 231
  • [5] Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing
    Xiuling Deng
    Dong Wang
    Shenyuan Wang
    Haisheng Wang
    Huanmin Zhou
    Biological Research, 51
  • [6] Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica
    Shu, Yongjun
    Li, Wei
    Zhao, Jinyue
    Liu, Ying
    Guo, Changhong
    GENETICS AND MOLECULAR BIOLOGY, 2018, 41 (03) : 638 - 648
  • [7] WGCNA Analysis of Salt-Responsive Core Transcriptome Identifies Novel Hub Genes in Rice
    Zhu, Mingdong
    Xie, Hongjun
    Wei, Xiangjin
    Dossa, Komivi
    Yu, Yaying
    Hui, Suozhen
    Tang, Guohua
    Zeng, Xiaoshan
    Yu, Yinghong
    Hu, Peisong
    Wang, Jianlong
    GENES, 2019, 10 (09)
  • [8] De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver
    Lin Wang
    Hongyan Du
    Tiezhu Li
    Ta-na Wuyun
    Trees, 2018, 32 : 151 - 163
  • [9] De novo transcriptome sequencing and identification of genes related to salt stress in Eucommia ulmoides Oliver
    Wang, Lin
    Du, Hongyan
    Li, Tiezhu
    Wuyun, Ta-na
    TREES-STRUCTURE AND FUNCTION, 2018, 32 (01): : 151 - 163
  • [10] De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis
    Li, Li
    Li, Mimi
    Qi, Xiwu
    Tang, Xingli
    Zhou, Yifeng
    PEERJ, 2018, 6