Quantum Random Access Memory Architectures Using 3D Superconducting Cavities

被引:5
作者
Weiss, D. K. [1 ,2 ,3 ]
Puri, Shruti [1 ,2 ,3 ]
Girvin, S. M. [1 ,2 ,3 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[3] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
来源
PRX QUANTUM | 2024年 / 5卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; STATE TRANSFER; ENTANGLEMENT; FIDELITY; DYNAMICS; QUTIP;
D O I
10.1103/PRXQuantum.5.020312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum random access memory (QRAM) is a common architecture resource for algorithms with many proposed applications, including quantum chemistry, windowed quantum arithmetic, unstructured search, machine learning, and quantum cryptography. Here, we propose two bucket -brigade QRAM architectures based on high -coherence superconducting resonators, which differ in their realizations of the conditional -routing operations. In the first, we directly construct cavity -controlled controlled - SWAP ( CSWAP ) operations, while in the second, we utilize the properties of giant -unidirectional emitters (GUEs). For both architectures, we analyze singleand dual -rail implementations of a bosonic qubit. In the singlerail encoding, we can detect first -order ancilla errors, while the dual -rail encoding additionally allows for the detection of photon losses. For parameter regimes of interest, the postselected infidelity of a QRAM query in a dual -rail architecture is nearly an order of magnitude below that of a corresponding query in a single -rail architecture. These findings suggest that dual -rail encodings are particularly attractive as architectures for QRAM devices in the era before fault tolerance.
引用
收藏
页数:23
相关论文
共 65 条
[1]  
Ambainis A, 2014, Arxiv, DOI arXiv:quant-ph/0311001
[2]   On the robustness of bucket brigade quantum RAM [J].
Arunachalam, Srinivasan ;
Gheorghiu, Vlad ;
Jochym-O'Connor, Tomas ;
Mosca, Michele ;
Srinivasan, Priyaa Varshinee .
NEW JOURNAL OF PHYSICS, 2015, 17
[3]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[4]   Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization [J].
Berry, Dominic W. ;
Gidney, Craig ;
Motta, Mario ;
McClean, Jarrod R. ;
Babbush, Ryan .
QUANTUM, 2019, 3
[5]   Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM optimization [J].
Bugalho, Luis ;
Cruzeiro, Emmanuel Zambrini ;
Chen, Kevin C. ;
Dai, Wenhan ;
Englund, Dirk ;
Omar, Yasser .
NPJ QUANTUM INFORMATION, 2023, 9 (01)
[6]   Seamless High-Q Microwave Cavities for Multimode Circuit Quantum Electrodynamics [J].
Chakram, Srivatsan ;
Oriani, Andrew E. ;
Naik, Ravi K. ;
Dixit, Akash V. ;
He, Kevin ;
Agrawal, Ankur ;
Kwon, Hyeokshin ;
Schuster, David I. .
PHYSICAL REVIEW LETTERS, 2021, 127 (10)
[7]   High-On-Off-Ratio Beam-Splitter Interaction for Gates on Bosonically Encoded Qubits [J].
Chapman, Benjamin J. ;
de Graaf, Stijn J. ;
Xue, Sophia H. ;
Zhang, Yaxing ;
Teoh, James ;
Curtis, Jacob C. ;
Tsunoda, Takahiro ;
Eickbusch, Alec ;
Read, Alexander P. ;
Koottandavida, Akshay ;
Mundhada, Shantanu O. ;
Frunzio, Luigi ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PRX QUANTUM, 2023, 4 (02)
[8]   Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks [J].
Chen, K. C. ;
Dai, W. ;
Errando-Herranz, C. ;
Lloyd, S. ;
Englund, D. .
PRX QUANTUM, 2021, 2 (03)
[9]  
Chou KS, 2023, Arxiv, DOI arXiv:2307.03169
[10]   SIMPLE QUANTUM COMPUTER [J].
CHUANG, IL ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1995, 52 (05) :3489-3496