Securing Anomaly Detection for Process-Based Time Series

被引:0
|
作者
Lewis, Tyler [1 ]
Sundaram, Arvind [1 ]
Al Rashdan, Ahmad Y. [2 ]
Abdel-Khalik, Hany S. [1 ]
机构
[1] Purdue Univ, Nucl Engn, W Lafayette, IN 47907 USA
[2] Idaho Natl Lab, Nucl Sci & Technol, Idaho Falls, ID USA
关键词
Machine learning; data privacy; time series; secure collaboration; inference-preserving data masking; ENCRYPTION; SIMULATION;
D O I
10.1080/00295639.2024.2360313
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Widespread innovation from artificial intelligence and machine learning (AI/ML) tools presents a lucrative opportunity for the nuclear industry to improve state-of-the-art analyses (e.g. condition monitoring, remote operation, etc.) due to increased data visibility. In recent years, the risk posed by collaborative data exchange has received increased attention due, in part, to a potential adversary's ability to reverse-engineer intercepted data using domain knowledge and AI/ML tools. While the efficacy of typical encryption has been proven during passive communication and data storage, collaborative exchange typically requires decryption for extended analyses by a third-party, which poses an intrinsic risk due to these trustworthiness concerns. The directed infusion of data (DIOD)11A.Al Rashdan and H.Abdel-Khalik, Deceptive Infusion of Data, Non-Provisional Patent, Application No. 63/227,389, September 2022. paradigm presented in this paper discusses a novel data masking technique that relies on preserving the usable information of proprietary data while concealing its identity via reduced-order modeling. In contrast to existing state-of-the-art data masking methods, DIOD does not impose limiting assumptions, computational overheads, or induced uncertainties, thereby allowing for secure and flexible data-level security that does not alter the inferential content of the data. This paper focuses on the application of DIOD to a process-based simulation wherein a leaking reservoir with a controlled inlet pump is simulated under various experimental conditions with the goal of producing masked data that preserve the information given by anomalies. These experiments included the injection of statistically significant anomalies, subtle anomalies that occurred over an extended period, and the addition of several independent anomalous states. Each experiment showed that a classifier will identify the same anomalies whether it analyzes the original or masked data. An additional experiment also tested the case of corrupted labeling information wherein labels were arbitrarily randomized, and the loss in labeling accuracy was about the same for both datasets. Each of these experiments show that data obfuscated by DIOD may be utilized in the place of real data for a variety of condition monitoring scenarios with no loss in performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Anomaly detection of process unit based on LSTM time series reconstruction
    Dou S.
    Zhang G.
    Xiong Z.
    Huagong Xuebao/CIESC Journal, 2019, 70 (02): : 481 - 486
  • [2] Research of Anomaly Detection Based on Time Series
    Wang, Guilan
    Wang, Zhenqi
    Luo, Xianjin
    2009 WRI WORLD CONGRESS ON SOFTWARE ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 444 - 448
  • [3] Time Series Anomaly Detection Based on GAN
    Sun, Yong
    Yu, Wenbo
    Chen, Yuting
    Kadam, Aishwarya
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 375 - 382
  • [4] Matern process-based simulation of wind speed time series
    Mena, R.
    Zio, E.
    Viveros, P.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 266
  • [5] Anomaly Scoring for Prediction-Based Anomaly Detection in Time Series
    Li, Tianyu
    Comer, Mary L.
    Delp, Edward J.
    Desai, Sundip R.
    Mathieson, James L.
    Foster, Richard H.
    Chan, Moses W.
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [6] NLP Based Anomaly Detection for Categorical Time Series
    Horak, Matthew
    Chandrasekaran, Sowmya
    Tobar, Giovanni
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 27 - 34
  • [7] Hydrologic Time Series Anomaly Detection Based on Flink
    Ye, Feng
    Liu, Zihao
    Liu, Qinghua
    Wang, Zhijian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [8] Anomaly detection in time series based on interval sets
    Ren, Huorong
    Liu, Mingming
    Liao, Xiujuan
    Liang, Li
    Ye, Zhixing
    Li, Zhiwu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (05) : 757 - 762
  • [9] Unsupervised diffusion based anomaly detection for time series
    Zuo, Haiwei
    Zhu, Aiqun
    Zhu, Yanping
    Liao, Yinping
    Li, Shiman
    Chen, Yun
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8968 - 8981
  • [10] Time series anomaly detection based on shapelet learning
    Beggel, Laura
    Kausler, Bernhard X.
    Schiegg, Martin
    Pfeiffer, Michael
    Bischl, Bernd
    COMPUTATIONAL STATISTICS, 2019, 34 (03) : 945 - 976