Field Emission Properties of Cu-Filled Vertically Aligned Carbon Nanotubes Grown Directly on Thin Cu Foils

被引:4
作者
Nwanno, Chinaza E. [1 ]
Thapa, Arun [1 ]
Watt, John [2 ]
Bendayan, Daniel Simkins [1 ]
Li, Wenzhi [1 ]
机构
[1] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
VACNTs; copper; PECVD; field emission; ENHANCEMENT FACTOR; COPPER SUBSTRATE; BETA-CAROTENE; WORK FUNCTION; NANOPARTICLES; ENCAPSULATION; NANOWIRES; STABILITY; CATHODE; METALS;
D O I
10.3390/nano14110988
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabricating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils. Comprehensive analysis using field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) mappings, and X-ray diffraction (XRD) revealed uniform Cu filling within the VACNTs across a range of synthesis temperatures (650 degrees C, 700 degrees C, and 760 degrees C). Field emission (FE) measurements of the sample synthesized at 700 degrees C (S700) showed low turn-on and threshold fields of 2.33 V/mu m and 3.29 V/mu m, respectively. The findings demonstrate the viability of thin Cu substrates in creating dense and highly conductive Cu-filled VACNT arrays for advanced electronic and nanoelectronics applications.
引用
收藏
页数:15
相关论文
共 88 条
[1]   Methods and Applications of Electrical Conductivity Enhancement of Materials Using Carbon Nanotubes [J].
Abdulhameed, Abdullah ;
Wahab, Nur Zuraihan Abd ;
Mohtar, Mohd Nazim ;
Hamidon, Mohd Nizar ;
Shafie, Suhaidi ;
Halin, Izhal Abdul .
JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (06) :3207-3221
[2]   CARBON NANOTUBES AS REMOVABLE TEMPLATES FOR METAL-OXIDE NANOCOMPOSITES AND NANOSTRUCTURES [J].
AJAYAN, PM ;
STEPHAN, O ;
REDLICH, P ;
COLLIEX, C .
NATURE, 1995, 375 (6532) :564-567
[3]  
Arai S, 2021, Electrochem, V2, P563, DOI [10.3390/electrochem2040036, 10.3390/electrochem2040036, DOI 10.3390/ELECTROCHEM2040036, 10.3390/ELECTROCHEM2040036]
[4]   Nickel Catalyst-Assisted Vertical Growth of Dense Carbon Nanotube Forests on Bulk Copper [J].
Atthipalli, Gowtam ;
Epur, Rigved ;
Kumta, Prashant N. ;
Yang, Mengjin ;
Lee, Jung-Kun ;
Gray, Jennifer L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3534-3538
[5]  
Awan T.I., 2020, CHEM NANOMATERIALS, P179, DOI [10.1016/B978-0-12-818908-5.00007-X, DOI 10.1016/B978-0-12-818908-5.00007-X]
[6]   One-step grown multi-walled carbon nanotubes with Ni filling and decoration [J].
Baro, Mahananda ;
Pal, Arup R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (22)
[7]   Degradation and failure of carbon nanotube field emitters [J].
Bonard, JM ;
Klinke, C ;
Dean, KA ;
Coll, BF .
PHYSICAL REVIEW B, 2003, 67 (11) :10
[8]   Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters? [J].
Bonard, JM ;
Croci, M ;
Arfaoui, I ;
Noury, O ;
Sarangi, D ;
Châtelain, A .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :763-768
[9]   Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation [J].
Caillier, Ch. ;
Machon, D. ;
San-Miguel, A. ;
Arenal, R. ;
Montagnac, G. ;
Cardon, H. ;
Kalbac, M. ;
Zukalova, M. ;
Kavan, L. .
PHYSICAL REVIEW B, 2008, 77 (12)
[10]   Electron field emission properties of vertically aligned carbon nanotube point emitters [J].
Chen, Guohai ;
Neupane, S. ;
Li, W. Z. .
DIAMOND AND RELATED MATERIALS, 2012, 25 :134-138