G-semisimple algebras

被引:0
|
作者
Hafezi, Rasool [1 ]
Bahlekeh, Abdolnaser [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Gonbad Kavous Univ, Dept Math, Gonbad Kavous 4971799151, Iran
基金
中国国家自然科学基金;
关键词
G-semisimple algebra; Monomorphism category; (Stable) Auslander Cohen-Macaulay; algebra; Gorenstein projective module; Auslander-Reiten quiver; MONIC REPRESENTATIONS; TILTED ALGEBRAS; CATEGORIES; SUBCATEGORIES; EQUIVALENCES; COMPLEXES; HOMOTOPY;
D O I
10.1016/j.jpaa.2024.107738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an Artin algebra and mod -( Gprj -A ) the category of finitely presented functors over the stable category Gprj -A of finitely generated Gorenstein projective A-modules. This paper deals with those algebras A in which mod -( Gprj -A ) is a semisimple abelian category, and we call G-semisimple algebras. We study some basic properties of such algebras. In particular, it will be observed that the class of G-semisimple algebras contains important classes of algebras, including gentle algebras and more generally quadratic monomial algebras. Next, we construct an epivalence (called representation equivalence in the terminology of Auslander), i.e. a full and dense functor that reflects isomorphisms, from the stable category of Gorenstein projective representations Gprj (Q, A) of a finite acyclic quiver Q to the category of representations rep(Q, Gprj -A ) over Gprj -A , provided A is a G-semisimple algebra over an algebraic closed field. Using this, we will show that the path algebra AQ of the G-semisimple algebra A is CM-finite if and only if Q is Dynkin. In the last part, we provide a complete classification of indecomposable Gorenstein projective representations within Gprj(A n , A) of the linear quiver A n over a G-semisimple algebra A. We also determine almost split sequences in Gprj(A n , A) with certain ending terms. We apply these results to obtain insights into the cardinality of the components of the stable Auslander-Reiten quiver Gprj (A n , A). (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] ON A CLASS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS
    Klupsch, Matthias
    Ludes, Julia
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2932 - 2942
  • [2] P-semisimple pseudo-BCI-algebras
    Dymek, G. (gdymek@o2.pl), 1600, Old City Publishing (19): : 5 - 6
  • [3] KOSZUL DUALITY AND MODULAR REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS
    Riche, Simon
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (01) : 31 - 134
  • [4] Uniqueness of F-Algebra Topology for Commutative Semisimple Algebras
    Gurusamy Siva
    Chinnadurai Ganesa Moorthy
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 1871 - 1877
  • [5] Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution
    Bezrukavnikov, Roman
    Mirkovic, Ivan
    ANNALS OF MATHEMATICS, 2013, 178 (03) : 835 - 919
  • [6] From non-semisimple Hopf algebras to correlation functions for logarithmic CFT
    Fuchs, Juergen
    Schweigert, Christoph
    Stigner, Carl
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (49)
  • [7] ON TAME CONCEALED ALGEBRAS
    Jaworska-Pastuszak, Alicja
    COLLOQUIUM MATHEMATICUM, 2018, 154 (01) : 47 - 63
  • [8] G-Injective Envelope of Separable G-C∗-algebras
    Mahmoodi, Ali
    Mardanbeigi, Mohammad R.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (02): : 51 - 60
  • [9] On the variety of Gödel MV-algebras
    Antonio Di Nola
    Revaz Grigolia
    Gaetano Vitale
    Soft Computing, 2019, 23 : 12929 - 12935
  • [10] Tilting-Connected Symmetric Algebras
    Aihara, Takuma
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (03) : 873 - 894