Residual-Based Error Bound for Physics-Informed Neural Networks
被引:0
|
作者:
Liu, Shuheng
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USAHarvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
Liu, Shuheng
[1
]
Huang, Xiyue
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Data Sci Inst, New York, NY USAHarvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
Huang, Xiyue
[2
]
论文数: 引用数:
h-index:
机构:
Protopapas, Pavlos
[1
]
机构:
[1] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[2] Columbia Univ, Data Sci Inst, New York, NY USA
来源:
UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
|
2023年
/
216卷
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Neural networks are universal approximators and are studied for their use in solving differential equations. However, a major criticism is the lack of error bounds for obtained solutions. This paper proposes a technique to rigorously evaluate the error bound of Physics-Informed Neural Networks (PINNs) on most linear ordinary differential equations (ODEs), certain nonlinear ODEs, and first-order linear partial differential equations (PDEs). The error bound is based purely on equation structure and residual information and does not depend on assumptions of how well the networks are trained. We propose algorithms that bound the error efficiently. Some proposed algorithms provide tighter bounds than others at the cost of longer run time.
机构:
Brown Univ, Div Appl Math, Providence, RI 02912 USA
Brown Univ, Sch Engn, Providence, RI 02912 USAEcole Polytech Fed Lausanne, Lab Hemodynam & Cardiovasc Technol, ,VD, CH-1015 Lausanne, Switzerland
机构:
Simula Res Lab, Dept Numer Anal & Sci Comp, Kristian Augustsgate 23, N-0164 Oslo, NorwaySimula Res Lab, Dept Numer Anal & Sci Comp, Kristian Augustsgate 23, N-0164 Oslo, Norway
Zeinhofer, Marius
Masri, Rami
论文数: 0引用数: 0
h-index: 0
机构:
Simula Res Lab, Dept Numer Anal & Sci Comp, Kristian Augustsgate 23, N-0164 Oslo, NorwaySimula Res Lab, Dept Numer Anal & Sci Comp, Kristian Augustsgate 23, N-0164 Oslo, Norway
机构:
D Math ETH Zurich, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, SwitzerlandD Math ETH Zurich, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland
Mishra, Siddhartha
Molinaro, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
D Math ETH Zurich, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, SwitzerlandD Math ETH Zurich, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland