The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight

被引:0
作者
Wang, Yuxi [1 ]
Chen, Yang [1 ]
机构
[1] Univ Macau, Dept Math, Macau 999078, Peoples R China
关键词
Orthogonal polynomials; Hankel matrices; Smallest eigenvalue; Asymptotics; CAPACITY;
D O I
10.1016/j.amc.2024.128615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the large N behavior of the smallest eigenvalue lambda(N) of the (N+1) x (N+1) Hankel matrix, H-N = (mu(j+k))0 <= j,k <= N, generated by the gamma dependent Jacobi weight w(z, gamma) = e(-gamma z)z alpha(1-z)(beta), z is an element of [0,1], gamma is an element of R, alpha > -1, beta > -1. Applying the arguments of Szego, Widom and Wilf, we obtain the asymptotic representation of the orthonormal polynomials P-N(z),z is an element of C\[0,1], with the weight w(z,gamma) = e(-gamma z) z(alpha)(1-z)(beta). Using the polynomials P-N(z), we obtain the theoretical expression of lambda(N), for large N. We also display the smallest eigenvalue lambda(N) for sufficiently large N, computed numerically.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Single-user MIMO system, Painleve transcendents, and double scaling [J].
Chen, Hongmei ;
Chen, Min ;
Blower, Gordon ;
Chen, Yang .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
[2]   Smallest eigenvalues of Hankel matrices for exponential weights [J].
Chen, Y ;
Lubinsky, DS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :476-495
[3]   Small eigenvalues of large Hankel matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42) :7305-7315
[4]  
Chen Y, 2010, Arxiv, DOI [arXiv:1007.0496, 10.48550/arXiv.1007.0496, DOI 10.48550/ARXIV.1007.0496]
[5]   Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation [J].
Chen, Yang ;
Sikorowski, Jakub ;
Zhu, Mengkun .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
[6]   Coulumb Fluid, Painleve Transcendents, and the Information Theory of MIMO Systems [J].
Chen, Yang ;
McKay, Matthew R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) :4594-4634
[7]   On the capacity of spatially correlated MIMO Rayleigh-fading channels [J].
Chiani, M ;
Win, MZ ;
Zanella, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) :2363-2371
[8]   Uniform eigenvalue estimates for time-frequency localization operators [J].
De Mari, F ;
Feichtinger, HG ;
Nowak, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :720-732
[9]   Computing the Smallest Eigenvalue of LargeIll-Conditioned Hankel Matrices [J].
Emmart, Niall ;
Chen, Yang ;
Weems, Charles C. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (01) :104-124
[10]   On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas [J].
Foschini G.J. ;
Gans M.J. .
Wireless Personal Communications, 1998, 6 (3) :311-335