Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples

被引:1
作者
Pang, Marion [1 ]
Jones, Jeff J. [1 ,3 ]
Wang, Ting-Yu [1 ,3 ]
Quan, Baiyi [4 ]
Kubat, Nicole J. [4 ]
Qiu, Yanping [1 ,3 ]
Roukes, Michael L. [1 ,2 ,4 ]
Chou, Tsui-Fen [1 ,3 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[3] CALTECH, Beckman Inst, Proteome Explorat Lab, Pasadena, CA 91125 USA
[4] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
关键词
single-cell proteomics; peptide identification optimization; protease choice; bottom-up proteomics; QUANTIFICATION; DIGESTION; STRATEGY; TRYPSIN; IDENTIFICATION; GENERATION; MIXTURES; PEPTIDES; ACCURACY; REVEALS;
D O I
10.1021/acs.jproteome.4c00062
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.
引用
收藏
页码:1528 / 1538
页数:11
相关论文
共 66 条
[21]   Six alternative proteases for mass spectrometry-based proteomics beyond trypsin [J].
Giansanti, Piero ;
Tsiatsiani, Liana ;
Low, Teck Yew ;
Heck, Albert J. R. .
NATURE PROTOCOLS, 2016, 11 (05) :993-1006
[22]   Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis [J].
Gillet, Ludovic C. ;
Navarro, Pedro ;
Tate, Stephen ;
Roest, Hannes ;
Selevsek, Nathalie ;
Reiter, Lukas ;
Bonner, Ron ;
Aebersold, Ruedi .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
[23]   Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion [J].
Glatter, Timo ;
Ludwig, Christina ;
Ahrne, Erik ;
Aebersold, Ruedi ;
Heck, Albert J. R. ;
Schmidt, Alexander .
JOURNAL OF PROTEOME RESEARCH, 2012, 11 (11) :5145-5156
[24]   Why less is more when generating tryptic peptides in bottom-up proteomics [J].
Hildonen, Siri ;
Halvorsen, Trine Gronhaug ;
Reubsaet, Leon .
PROTEOMICS, 2014, 14 (17-18) :2031-2041
[25]   Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics [J].
Huffman, R. Gray ;
Leduc, Andrew ;
Wichmann, Christoph ;
Di Gioia, Marco ;
Borriello, Francesco ;
Specht, Harrison ;
Derks, Jason ;
Khan, Saad ;
Khoury, Luke ;
Emmott, Edward ;
Petelski, Aleksandra A. ;
Perlman, David H. ;
Cox, Juergen ;
Zanoni, Ivan ;
Slavov, Nikolai .
NATURE METHODS, 2023, 20 (05) :714-+
[26]   USE OF ENDOPROTEINASE LYS-C FROM LYSOBACTER-ENZYMOGENES IN PROTEIN-SEQUENCE ANALYSIS [J].
JEKEL, PA ;
WEIJER, WJ ;
BEINTEMA, JJ .
ANALYTICAL BIOCHEMISTRY, 1983, 134 (02) :347-354
[27]   Rapid, One-Step Sample Processing for Label-Free Single-Cell Proteomics [J].
Johnston, S. Madisyn ;
Webber, Kei G. I. ;
Xie, Xiaofeng ;
Truong, Thy ;
Nydegger, Alissia ;
Lin, Hsien-Jung L. ;
Nwosu, Andikan ;
Zhu, Ying ;
Kelly, Ryan T. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2023, 34 (08) :1701-1707
[28]   Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization [J].
Jones, Jeff ;
MacKrell, Elliot J. ;
Wang, Ting-Yu ;
Lomenick, Brett ;
Roukes, Michael L. ;
Chou, Tsui-Fen .
BMC BIOINFORMATICS, 2023, 24 (01)
[29]   Semi-supervised learning for peptide identification from shotgun proteomics datasets [J].
Kall, Lukas ;
Canterbury, Jesse D. ;
Weston, Jason ;
Noble, William Stafford ;
MacCoss, Michael J. .
NATURE METHODS, 2007, 4 (11) :923-925
[30]   UpSet: Visualization of Intersecting Sets [J].
Lex, Alexander ;
Gehlenborg, Nils ;
Strobelt, Hendrik ;
Vuillemot, Romain ;
Pfister, Hanspeter .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) :1983-1992