DBMA-Net: A Dual-Branch Multiattention Network for Polyp Segmentation

被引:2
作者
Zhai, Chenxu [1 ]
Yang, Lei [1 ]
Liu, Yanhong [1 ]
Yu, Hongnian [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Edinburgh Napier Univ, Built Environm, Edinburgh EH10 5DT, Scotland
基金
中国国家自然科学基金;
关键词
Image segmentation; Transformers; Feature extraction; Biomedical imaging; Lesions; Shape; Optimization; Attention mechanism; dual-branch encoder; feature integration mechanism; polyp segmentation; ATTENTION;
D O I
10.1109/TIM.2024.3379418
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the early prevention stage of colorectal cancer (CRC), the utilization of automatic polyp segmentation techniques from colonoscopy images has demonstrated efficacy in mitigating the misdiagnosis rate. Nonetheless, accurate polyp segmentation is always against with various challenges, including the presence of inconsistent size and morphological changes within polyp classes, limited interclass contrast, and high levels of interference. In recent years, much methodologies based on convolutional neural networks (CNNs) have been widely introduced to enhance the precision of polyp segmentation. However, two significant hurdles persist: 1) these methods frequently suffer from an inadequate acquisition of contextual features, causing insufficient feature representation and 2) there is a deficiency in recognizing intricate information, such as precise polyp boundaries. Addressing these issues, this article introduces a novel dual-branch multiattention network, denoted as DBMA-Net. Specifically, proposed DBMA-Net primarily introduces a dual-encoding path that combines CNN and Transformer-based approaches to enrich feature representation. Additionally, an attention-based fusion module (AFM) is incorporated between the dual-encoding path, aimed at optimizing features by supplementing local information with global insights. Subsequently, two distinct attention mechanisms are introduced to enhance features: the attention-based enhancement module (AEM) and the multiview attention module (MAM), to acquire stronger local features. These modules serve to enrich the finer details while extensively exploring and enhancing the lesion region, thereby further elevating segmentation accuracy. Following the above feature optimization, the enhanced feature maps are hierarchically integrated across multiple scales based on the proposed multiscale feature integration module (MFIM) for accurate feature reconstruction. This strategy not only curtails feature loss but also aids in restoring feature resolution. Ultimately, comprehensive experiments, including comparative and ablation studies across various datasets, validate the superior segmentation performance of the proposed network compared to most state-of-the-art (SOTA) models.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] DCTP-Net: Dual-Branch CLIP-Enhance Textual Prompt-Aware Network for Acute Ischemic Stroke Lesion Segmentation From CT Image
    Liu, Jiahao
    Zhu, Hongqing
    Wang, Ziying
    Chen, Ning
    Hou, Tong
    Huang, Bingcang
    Lu, Weiping
    Wang, Ying
    Yang, Suyi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 507 - 520
  • [32] CGMA-Net: Cross-Level Guidance and Multi-Scale Aggregation Network for Polyp Segmentation
    Zheng, Jianwei
    Yan, Yidong
    Zhao, Liang
    Pan, Xiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (03) : 1424 - 1435
  • [33] MDCF-Net: Multi-Scale Dual-Branch Network for Compressed Face Forgery Detection
    Zhou, Jiting
    Zhao, Xinrui
    Xu, Qian
    Zhang, Pu
    Zhou, Zhihao
    IEEE ACCESS, 2024, 12 : 58740 - 58749
  • [34] DHUnet: Dual-branch hierarchical global-local fusion network for whole slide image segmentation
    Wang, Lian
    Pan, Liangrui
    Wang, Hetian
    Liu, Mingting
    Feng, Zhichao
    Rong, Pengfei
    Chen, Zuo
    Peng, Shaoliang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [35] Spatio-Temporal Dual-Branch Network With Predictive Feature Learning for Satellite Video Object Segmentation
    Zhong, Yanfei
    Shu, Meng
    Liu, Zhenqi
    Lu, Xiaoyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] DBDAN: Dual-Branch Dynamic Attention Network for Semantic Segmentation of Remote Sensing Images
    Che, Rui
    Ma, Xiaowen
    Hong, Tingfeng
    Wang, Xinyu
    Feng, Tian
    Zhang, Wei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 306 - 317
  • [37] Dual-branch image projection network for geographic atrophy segmentation in retinal OCT images
    Liu, Xiaoming
    Li, Jieyang
    Zhang, Ying
    Yao, Junping
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] STDBNet: Shared Trunk and Dual-Branch Network for Real-Time Semantic Segmentation
    Ren, Fenglei
    Zhou, Haibo
    Yang, Lu
    Bai, Yiwen
    Xu, Wenxue
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 770 - 774
  • [39] A Dual-Branch Multiscale Transformer Network for Hyperspectral Image Classification
    Shi, Cuiping
    Yue, Shuheng
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [40] Dual-Branch Enhanced Network for Change Detection
    Zhang, Hongrui
    Qu, Shaocheng
    Li, Huan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3459 - 3471