High rectifying performance of armchair C3N heterojunction based on the interface between pristine and H-passivated nanoribbons

被引:5
作者
Ding, Wence [1 ,2 ,3 ]
Zhang, Jie [3 ]
Li, Xiaobo [1 ,2 ]
Zhou, Guanghui [3 ,4 ]
机构
[1] Hunan Univ Technol & Business, Xiangjiang Lab, Changsha 410205, Peoples R China
[2] Hunan Univ Technol & Business, Sch Microelect & Phys, Changsha 410205, Peoples R China
[3] Hunan Normal Univ, Dept Phys, Key Lab Low Dimens Struct & Quantum Manipulat, Minist Educ, Changsha 410081, Peoples R China
[4] Shaoyang Univ, Sch Sci, Shaoyang 422001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
C3N nanoribbons; Rectifying performance; Heterojunction; Electronic device; CHARGE TRANSPORT-PROPERTIES; ELECTRONIC-PROPERTIES; GRAPHENE; PHOSPHORENE; GAS;
D O I
10.1016/j.apsusc.2024.160043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional polyaniline with a C 3 N structure is a newly fabricated layered material that is expected to have fascinating electronic, thermal, mechanical, and chemical properties. By performing first -principles calculations based on density functional theory and the nonequilibrium Green's function, we first perform a stoichiometric study of the energy bands of armchair C 3 N nanoribbons (AC 3 NNRs) without and with Hpassivation. The results show that the pristine AC 3 NNRs are metals, whereas the H-passivated nanoribbons are either direct or indirect band gap semiconductors with different edge configurations. Interestingly, additional transport calculations demonstrate that the AC 3 NNR-based heterojunction shows good rectification behavior. The average rectification ratio (RR) can reach up to 10 3 under voltage bias within the range from 0.2 to 0.4 V. In particular, extending the length of the scattering region in the heterojunction, which leads to a reduction in the current passing through the junction, allows the RR to be enlarged obviously. The average value of RR increases to a magnitude of the order of 10 4 under bias voltages in the range from 0.25 to 0.4 V, with a boosted maximum of up to 10 5 at 0.35 V. The findings of this work may be helpful in the design of functional nanodevices based on AC 3 NNRs in the future.
引用
收藏
页数:8
相关论文
共 58 条
[31]   Nonvolatile Electrical Control and Reversible Gas Capture by Ferroelectric Polarization Switching in 2D FeI2/In2S3 van der Waals Heterostructures [J].
Liu, Guogang ;
Chen, Tong ;
Zhou, Guanghui ;
Xu, Zhonghui ;
Xiao, Xianbo .
ACS SENSORS, 2023, 8 (04) :1440-1449
[32]   Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility [J].
Liu, Han ;
Neal, Adam T. ;
Zhu, Zhen ;
Luo, Zhe ;
Xu, Xianfan ;
Tomanek, David ;
Ye, Peide D. .
ACS NANO, 2014, 8 (04) :4033-4041
[33]   SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS [J].
CHADI, DJ .
PHYSICAL REVIEW B, 1977, 16 (04) :1746-1747
[34]   Lateral Graphene Heterostructure Field-Effect Transistor [J].
Moon, Jeong S. ;
Seo, Hwa-chang ;
Stratan, Fred ;
Antcliffe, Mike ;
Schmitz, Adele ;
Ross, Richard S. ;
Kiselev, Andrey A. ;
Wheeler, Virginia D. ;
Nyakiti, Luke O. ;
Gaskill, D. Kurt ;
Lee, Kang-Mu ;
Asbeck, Peter M. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) :1190-1192
[35]   Ultra high stiffness and thermal conductivity of graphene like C3N [J].
Mortazavi, Bohayra .
CARBON, 2017, 118 :25-34
[36]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[37]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[38]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[39]   Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N=7 Armchair Graphene Nanoribbons [J].
Passi, Vikram ;
Gahoi, Amit ;
Senkoyskiy, Boris V. ;
Haberer, Danny ;
Fischer, Felix R. ;
Grueneis, Alexander ;
Lemme, Max C. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) :9900-9903
[40]   CLASSICAL AND QUANTUM TRANSPORT FROM GENERALIZED LANDAUER-BUTTIKER EQUATIONS [J].
PASTAWSKI, HM .
PHYSICAL REVIEW B, 1991, 44 (12) :6329-6339