Multivariate Bayesian models with flexible shared interactions for analyzing spatio-temporal patterns of rare cancers

被引:0
作者
Retegui, Garazi [1 ,2 ]
Etxeberria, Jaione [1 ,2 ]
Ugarte, Maria Dolores [1 ,2 ]
机构
[1] Publ Univ Navarre UPNA, Dept Stat Comp Sci & Math, Arrosadia Campus, Pamplona 31006, Navarra, Spain
[2] Publ Univ Navarre UPNA, Inst Adv Mat & Math INAMAT2, Arrosadia Campus, Pamplona 31006, Navarra, Spain
关键词
Leukaemia; Multivariate disease mapping; Pancreatic cancer; Spatio-temporal shared component models; JOINT SPATIAL-ANALYSIS; MARKOV RANDOM-FIELDS; PANCREATIC-CANCER; CAR MODELS; RISK; MORTALITY; FRAMEWORK; BURDEN; EUROPE; RATES;
D O I
10.1007/s10651-024-00630-w
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rare cancers affect millions of people worldwide each year. However, estimating incidence or mortality rates associated with rare cancers presents important difficulties and poses new statistical methodological challenges. In this paper, we expand the collection of multivariate spatio-temporal models by introducing adaptable shared spatio-temporal components to enable a comprehensive analysis of both incidence and cancer mortality in rare cancer cases. These models allow the modulation of spatio-temporal effects between incidence and mortality, allowing for changes in their relationship over time. The new models have been implemented in INLA using r-generic constructions. We conduct a simulation study to evaluate the performance of the new spatio-temporal models. Our results show that multivariate spatio-temporal models incorporating a flexible shared spatio-temporal term outperform conventional multivariate spatio-temporal models that include specific spatio-temporal effects for each health outcome. We use these models to analyze incidence and mortality data for pancreatic cancer and leukaemia among males across 142 administrative health care districts of Great Britain over a span of nine biennial periods (2002-2019).
引用
收藏
页码:977 / 1007
页数:31
相关论文
共 44 条
[1]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[2]   BAYESIAN IMAGE-RESTORATION, WITH 2 APPLICATIONS IN SPATIAL STATISTICS [J].
BESAG, J ;
YORK, J ;
MOLLIE, A .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) :1-20
[3]   Epidemiology and Etiology of Leukemia and Lymphoma [J].
Bispo, Jordan A. Baeker ;
Pinheiro, Paulo S. ;
Kobetz, Erin K. .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2020, 10 (06)
[4]   A unifying modeling framework for highly multivariate disease mapping [J].
Botella-Rocamora, P. ;
Martinez-Beneito, M. A. ;
Banerjee, S. .
STATISTICS IN MEDICINE, 2015, 34 (09) :1548-1559
[5]   Incidence and survival of rare cancers in the US and Europe [J].
Botta, Laura ;
Gatta, Gemma ;
Trama, Annalisa ;
Bernasconi, Alice ;
Sharon, Elad ;
Capocaccia, Riccardo ;
Mariotto, Angela B. .
CANCER MEDICINE, 2020, 9 (15) :5632-5642
[6]   Bayesian estimates of the incidence of rare cancers in Europe [J].
Botta, Laura ;
Capocaccia, Riccardo ;
Trama, Annalisa ;
Herrmann, Christian ;
Salmeron, Diego ;
De Angelis, Roberta ;
Mallone, Sandra ;
Bidoli, Ettore ;
Marcos-Gragera, Rafael ;
Dudek-Godeau, Dorota ;
Gatta, Gemma ;
Cleries, Ramon .
CANCER EPIDEMIOLOGY, 2018, 54 :95-100
[7]   Trends in Colorectal Cancer Incidence and Survival in Iowa SEER Data: The Timing of It All [J].
Carroll, Rachel ;
Zhao, Shanshan .
CLINICAL COLORECTAL CANCER, 2019, 18 (02) :E261-E274
[8]   Inferring lung cancer risk factor patterns through joint Bayesian spatio-temporal analysis [J].
Cramb, Susanna M. ;
Baade, Peter D. ;
White, Nicole M. ;
Ryan, Louise M. ;
Mengersen, Kerrie L. .
CANCER EPIDEMIOLOGY, 2015, 39 (03) :430-439
[9]   Joint modelling of brain cancer incidence and mortality using Bayesian age- and gender-specific shared component models [J].
Etxeberria, J. ;
Goicoa, T. ;
Ugarte, M. D. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (10) :2951-2969
[10]   Using mortality to predict incidence for rare and lethal cancers in very small areas [J].
Etxeberria, Jaione ;
Goicoa, Tomas ;
Ugarte, Maria D. .
BIOMETRICAL JOURNAL, 2023, 65 (03)