Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows

被引:0
作者
Zhang, Cheng [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
MULTIPLE GENE LOCI; EVOLUTION; LIKELIHOOD; PROPOSALS; SEQUENCES; MRBAYES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational Bayesian phylogenetic inference (VBPI) provides a promising general variational framework for efficient estimation of phylogenetic posteriors. However, the current diagonal Lognormal branch length approximation would significantly restrict the quality of the approximating distributions. In this paper, we propose a new type of VBPI, VBPI-NF, as a first step to empower phylogenetic posterior estimation with deep learning techniques. By handling the non-Euclidean branch length space of phylogenetic models with carefully designed permutation equivariant transformations, VBPI-NF uses normalizing flows to provide a rich family of flexible branch length distributions that generalize across different tree topologies. We show that VBPI-NF significantly improves upon the vanilla VBPI on a benchmark of challenging real data Bayesian phylogenetic inference problems. Further investigation also reveals that the structured parameterization in those permutation equivariant transformations can provide additional amortization benefit.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Variational Approach to Bayesian Phylogenetic Inference
    Zhang, Cheng
    Matsen IV, Frederick A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [2] Normalizing Flows for Probabilistic Modeling and Inference
    Papamakarios, George
    Nalisnick, Eric
    Rezende, Danilo Jimenez
    Mohamed, Shakir
    Lakshminarayanan, Balaji
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [3] Sequential Bayesian Phylogenetic Inference
    Hoehna, Sebastian
    Hsiang, Allison Y.
    SYSTEMATIC BIOLOGY, 2024, 73 (04) : 704 - 721
  • [4] Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
    Wang, Liangliang
    Bouchard-Cote, Alexandre
    Doucet, Arnaud
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1362 - 1374
  • [5] Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics
    Fourment, Mathieu
    Darling, Aaron E.
    PEERJ, 2019, 7
  • [6] Particle Gibbs sampling for Bayesian phylogenetic inference
    Wang, Shijia
    Wang, Liangliang
    BIOINFORMATICS, 2021, 37 (05) : 642 - 649
  • [7] Fidelity of hyperbolic space for Bayesian phylogenetic inference
    Macaulay, Matthew O.
    Darling, Aaron
    Fourment, Mathieu O.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)
  • [8] RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language
    Hohna, Sebastian
    Landis, Michael J.
    Heath, Tracy A.
    Boussau, Bastien
    Lartillot, Nicolas
    Moore, Brian R.
    Huelsenbeck, John P.
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2016, 65 (04) : 726 - 736
  • [9] Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference
    Zhang, Chi
    Huelsenbeck, John P.
    Ronquist, Fredrik
    SYSTEMATIC BIOLOGY, 2020, 69 (05) : 1016 - 1032
  • [10] siMBa-a simple graphical user interface for the Bayesian phylogenetic inference program MrBayes
    Mishra, Bagdevi
    Thines, Marco
    MYCOLOGICAL PROGRESS, 2014, 13 (04) : 1255 - 1258