Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows

被引:0
作者
Zhang, Cheng [1 ,2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
MULTIPLE GENE LOCI; EVOLUTION; LIKELIHOOD; PROPOSALS; SEQUENCES; MRBAYES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational Bayesian phylogenetic inference (VBPI) provides a promising general variational framework for efficient estimation of phylogenetic posteriors. However, the current diagonal Lognormal branch length approximation would significantly restrict the quality of the approximating distributions. In this paper, we propose a new type of VBPI, VBPI-NF, as a first step to empower phylogenetic posterior estimation with deep learning techniques. By handling the non-Euclidean branch length space of phylogenetic models with carefully designed permutation equivariant transformations, VBPI-NF uses normalizing flows to provide a rich family of flexible branch length distributions that generalize across different tree topologies. We show that VBPI-NF significantly improves upon the vanilla VBPI on a benchmark of challenging real data Bayesian phylogenetic inference problems. Further investigation also reveals that the structured parameterization in those permutation equivariant transformations can provide additional amortization benefit.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Bender CM, 2020, AAAI CONF ARTIF INTE, V34, P10053
[2]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[3]   Ultrafast Approximation for Phylogenetic Bootstrap [J].
Bui Quang Minh ;
Minh Anh Thi Nguyen ;
von Haeseler, Arndt .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (05) :1188-1195
[4]  
Burda Y., 2016, 4 INT C LEARN REPR I
[5]  
Cremer Chris, 2018, P 35 INT C MACHINE L
[6]   Stochastic Variational Inference for Bayesian Phylogenetics: A Case of CAT Model [J].
Dang, Tung ;
Kishino, Hirohisa .
MOLECULAR BIOLOGY AND EVOLUTION, 2019, 36 (04) :825-833
[7]   The expansion of conservation genetics [J].
DeSalle, R ;
Amato, G .
NATURE REVIEWS GENETICS, 2004, 5 (09) :702-712
[8]  
Dinh L., 2017, INT C LEARNING REPRE
[9]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[10]   Choosing among Partition Models in Bayesian Phylogenetics [J].
Fan, Yu ;
Wu, Rui ;
Chen, Ming-Hui ;
Kuo, Lynn ;
Lewis, Paul O. .
MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (01) :523-532