Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat

被引:2
|
作者
Reid, Tessa E. [1 ,2 ]
Kavamura, Vanessa N. [1 ]
Torres-Ballesteros, Adriana [1 ]
Smith, Monique E. [1 ,3 ]
Abadie, Maider [1 ,4 ]
Pawlett, Mark [2 ]
Clark, Ian M. [1 ]
Harris, Jim A. [2 ]
Mauchline, Tim H. [1 ]
机构
[1] Rothamsted Res, Sustainable Soils & Crops, Harpenden AL5 2JQ, Herts, England
[2] Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
[3] Swedish Univ Agr Sci, Dept Ecol, SE-75007 Uppsala, Sweden
[4] INRAE, UR1264 MycSA, CS2032, F-33882 Villenave dOrnon, France
来源
ISME JOURNAL | 2024年 / 18卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
plant growth-promoting rhizobacteria; PGPR; wheat; fertilization; ploidy; culture-independent; culture-dependent; Bacteroidota; RHIZOSPHERE MICROBIOME; WILD; MICROORGANISMS; DIVERSITY; EVOLUTION; GENE;
D O I
10.1093/ismejo/wrae131
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Inorganic Chemical Fertilizer Application to Wheat Reduces the Abundance of Putative Plant Growth-Promoting Rhizobacteria
    Reid, Tessa E.
    Kavamura, Vanessa N.
    Abadie, Maider
    Torres-Ballesteros, Adriana
    Pawlett, Mark
    Clark, Ian M.
    Harris, Jim
    Mauchline, Tim H.
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [2] Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production
    de Andrade, Luana Alves
    Santos, Carlos Henrique Barbosa
    Frezarin, Edvan Teciano
    Sales, Luziane Ramos
    Rigobelo, Everlon Cid
    MICROORGANISMS, 2023, 11 (04)
  • [3] Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat
    Zahir, Z.A. (bio@fsd.paknet.com.pk), 1600, Blackwell Publishing Ltd (96):
  • [4] Growth promotion of two wheat cultivars by plant growth-promoting rhizobacteria
    Javed, M
    Arshad, M
    PAKISTAN JOURNAL OF BOTANY, 1997, 29 (02) : 243 - 248
  • [5] Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat
    Khalid, A
    Arshad, M
    Zahir, ZA
    JOURNAL OF APPLIED MICROBIOLOGY, 2004, 96 (03) : 473 - 480
  • [6] Plant responses to plant growth-promoting rhizobacteria
    L. C. van Loon
    European Journal of Plant Pathology, 2007, 119 : 243 - 254
  • [7] Plant Growth-Promoting Actions of Rhizobacteria
    Spaepen, Stijn
    Vanderleyden, Jos
    Okon, Yaacov
    PLANT INNATE IMMUNITY, 2009, 51 : 283 - 320
  • [8] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [9] Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria
    Gontia-Mishra, I.
    Sapre, S.
    Sharma, A.
    Tiwari, S.
    PLANT BIOLOGY, 2016, 18 (06) : 992 - 1000
  • [10] The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants
    Cakmakci, Ramazan
    Erat, Mustafa
    Erdogan, Ummugulsum
    Donmez, Mesude Figen
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2007, 170 (02) : 288 - 295