Analyzing Curvature Properties and Geometric Solitons of the Twisted Sasaki Metric on the Tangent Bundle over a Statistical Manifold

被引:2
作者
Yan, Lixu [1 ]
Li, Yanlin [2 ]
Bilen, Lokman [3 ]
Gezer, Aydin [4 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin 150040, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[3] Igdir Univ, Fac Sci & Art, Dept Math, TR-76100 Igdir, Turkiye
[4] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkiye
关键词
conformal vector field; Ricci and Yamabe solitons; statistical manifold; twisted Sasaki metric; tangent bundle; HEAT-EQUATIONS; POTENTIALS; FLOWS;
D O I
10.3390/math12091395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M,del,g) be a statistical manifold and TM be its tangent bundle endowed with a twisted Sasaki metric G. This paper serves two primary objectives. The first objective is to investigate the curvature properties of the tangent bundle TM. The second objective is to explore conformal vector fields and Ricci, Yamabe, and gradient Ricci-Yamabe solitons on the tangent bundle TM according to the twisted Sasaki metric G.
引用
收藏
页数:18
相关论文
共 50 条
[1]   Natural Ricci Solitons on Tangent and Unit Tangent Bundles [J].
Abbassi, Mohamed Tahar Kadaoui ;
Amri, Noura .
JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2021, 17 (01) :3-29
[2]   On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds [J].
Abbassi, MTK ;
Sarih, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) :19-47
[3]  
Abolarinwa A., 2015, J NONLINEAR EVOL EQU, V1, P1
[4]  
Abolarinwa A., 2014, ADV TH APPL MATH, V9, P155
[6]  
Amari Shun-ichi, 2000, Translations of Mathematical Monographs, V191
[7]   Information geometry of the EM and em algorithms for neural networks [J].
Amari, SI .
NEURAL NETWORKS, 1995, 8 (09) :1379-1408
[8]  
[Anonymous], 2005, Advances in Neural Information and Processing system
[9]  
Azami S, 2021, Arxiv, DOI [arXiv:2112.01271, 10.1007/s13398-023-01408-8, DOI 10.1007/S13398-023-01408-8]
[10]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399