ψ-Bernstein-Kantorovich operators

被引:7
作者
Aktuglu, Huseyin [1 ]
Kara, Mustafa [1 ]
Baytunc, Erdem [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, Mersin, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; polynomial approximation; rate of convergence; modulus of continuity; shape-preserving properties; uniform convergence; APPROXIMATION;
D O I
10.1002/mma.10375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce a modified class of Bernstein-Kantorovich operators dependingonan integrable function psi(alpha) and investigate their approximation properties. By choosing an appropriate function f, the order of approxi-mation of our operators to a function psi(alpha) is at least as good as the classical Bernstein-Kantorovich operators on the interval[0,1]. We compared the operators defined in this study not only with Bernstein-Kantorovich operators butalso with some other Bernstein-Kantorovich type operators. In this paper, wealso study the results on the uniform convergence and rate of convergenceof these operators in terms of the first- and second-order moduli of continuity, and we prove that our operators have shape-preserving properties. Finally,some numerical examples which support the results obtained in this paper areprovided.
引用
收藏
页码:1124 / 1141
页数:18
相关论文
共 26 条
[1]   Approximation by sampling Kantorovich series in weighted spaces of functions [J].
Acar, Tuncer ;
Alagoz, Osman ;
Aral, Ali ;
Costarelli, Danilo ;
Turgay, Metin ;
Vinti, Gianluca .
TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) :2663-2676
[2]   Multidimensional Kantorovich modifications of exponential sampling series [J].
Acar, Tuncer ;
Kursun, Sadettin ;
Turgay, Metin .
QUAESTIONES MATHEMATICAE, 2023, 46 (01) :57-72
[3]   On a Generalization of Szasz-Mirakjan-Kantorovich Operators [J].
Altomare, Francesco ;
Cappelletti Montano, Mirella ;
Leonessa, Vita .
RESULTS IN MATHEMATICS, 2013, 63 (3-4) :837-863
[4]  
Anastassiou G.A., 2000, Approximation Theory
[5]   Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces [J].
Angeloni, Laura ;
Cetin, Nursel ;
Costarelli, Danilo ;
Sambucini, Anna rita ;
Vinti, Gianluca .
CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (02) :229-241
[6]  
Bardaro C., 2007, Sampling Theory in Signal and Image Processing, V6, P29
[7]  
Bernstein S.N., 1912, Commun Kharkov Math Soc, V12, P1
[8]  
Davis P.J., 1975, Interpolation and Approximation
[9]  
DeVore R.A., 1993, CONSTR APPROX, P303
[10]  
Ditzian Z., 1987, Moduli of Smoothness