Renewable energy data acquisition and analysis sofware tool based on IoT sensors network for solar irradiance or wind power density forecasting

被引:0
作者
Kam, Olle Michel [1 ]
Tanougast, Camel [2 ]
Ramenah, Harry [2 ]
机构
[1] Univ Toulouse 2, Lab Rech Specialise Anal & Architecture Syst LAAS, Toulouse, France
[2] Univ Lorraine, Lab Genie Informat Prod & Maintenance LGIPM, Equipe SyLEE, Metz, France
来源
2024 1ST INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND ARTIFICIAL INTELLIGENCE, SESAI 2024 | 2024年
关键词
IoT; LoRaWAN; solar energy; wind energy; solar irradiance; wind speed; photovoltaic energy assessment; wind turbine energy assessment; Weibull function model; statistic model; Meteo-France data; VALIDATION; PARAMETERS; SYSTEM;
D O I
10.1109/SESAI61023.2024.10599450
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a renewable data acquisition and analysis software tool based on Internet of Things (IoT) sensors network for global solar irradiance and wind power density forecasting. This developed tool uses an adapted Weibull method to characterize global solar irradiation or wind speed variabilities to forecast of harvesting photovoltaic (PV) or wind turbine energies. The software implementation of the proposed forecasting model interfaced to weather sensors allows a realtime and intelligent management of deployed renewable energy systems in the France mainland territory.
引用
收藏
页码:154 / 158
页数:5
相关论文
共 17 条
  • [1] Cherif H, 2014, J ELECTR SYST, V10, P117
  • [2] Dali Mehdi, 2007, 2007 European Conference on Power Electronics and Applications, P1, DOI 10.1109/EPE.2007.4417240
  • [3] Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates
    Fuentes, M.
    Nofuentes, G.
    Aguilera, J.
    Talavera, D. L.
    Castro, M.
    [J]. SOLAR ENERGY, 2007, 81 (11) : 1396 - 1408
  • [4] CRITICAL ANALYSIS AND PERFORMANCE ASSESSMENT OF CLEAR-SKY SOLAR IRRADIANCE MODELS USING THEORETICAL AND MEASURED DATA
    GUEYMARD, C
    [J]. SOLAR ENERGY, 1993, 51 (02) : 121 - 138
  • [5] Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models
    Gueymard, Christian A.
    [J]. SOLAR ENERGY, 2012, 86 (08) : 2145 - 2169
  • [6] On comparing the shape parameters of two Weibull distributions
    Hudak, David
    Tiryakioglu, Murat
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27): : 8028 - 8030
  • [7] Kam OM, 2019, INT C CONTROL DECISI, P539, DOI 10.1109/CoDIT.2019.8820568
  • [8] Comparative Weibull distribution methods for reliable global solar irradiance assessment in France areas
    Kam, Olle Michel
    Noel, Stephane
    Ramenah, Harry
    Kasser, Pierre
    Tanougast, Camel
    [J]. RENEWABLE ENERGY, 2021, 165 (165) : 194 - 210
  • [9] Lai C.-D., 2006, Springer handbook of engineering statistics, P63, DOI [DOI 10.1007/978-1-84628-288-13, 10.1007/978-1-84628-288-1_3, DOI 10.1007/978-1-84628-288-1_3]
  • [10] How can We Tackle Energy Efficiency in IoT Based Smart Buildings?
    Moreno, M. Victoria
    Ubeda, Benito
    Skarmeta, Antonio F.
    Zamora, Miguel A.
    [J]. SENSORS, 2014, 14 (06) : 9582 - 9614