Independent transversal domination subdivision number of trees

被引:0
作者
Pushpam, P. Roushini Leely [1 ]
Bhanthavi, K. Priya [2 ]
机构
[1] DB Jain Coll, Dept Math, Chennai 600097, Tamil Nadu, India
[2] SDNB Vaishnav Coll Women, Dept Math, Chennai 600044, Tamil Nadu, India
关键词
dominating set; independent set; independent transversal dominating set; subdivision number;
D O I
10.22049/cco.2024.28772.1713
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S subset of V of vertices in a graph G = ( V, E ) is called a dominating set if every vertex in V \ S is adjacent to a vertex in S. The domination number (gamma )( G ) is the minimum cardinality of a dominating set of G . The domination subdivision number sd (gamma) ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the domination number. Sahul Hamid defined a dominating set which intersects every maximum independent set in G to be an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by (gamma) (it) ( G ). We extend the idea of domination subdivision number to independent transversal domination. The independent transversal domination subdivision number of a graph G denoted by sd (gamma it )( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent transversal domination number. In this paper we initiate a study of this parameter with respect to trees.
引用
收藏
页数:19
相关论文
共 10 条
  • [1] Independent transversal domination in trees, products and under local changes to a graph
    Anderson, Sarah E.
    Kuenzel, K.
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (05) : 981 - 995
  • [2] Domination subdivision numbers of trees
    Aram, H.
    Sheikholeslami, S. M.
    Favaron, O.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (04) : 622 - 628
  • [3] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73
  • [4] Chartrand G., 2005, GRAPHS DIGRAPHS, V4th, DOI DOI 10.1201/B19731
  • [5] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [6] Haynes T.W., 1998, PURE APPL MATH, V208, DOI 10.1201/9781482246582
  • [7] The stability of independent transversal domination in trees
    Pushpam, P. Roushini Leely
    Bhanthavi, K. Priya
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)
  • [8] On Independent Transversal Dominating Sets in Graphs
    Sevilleno, Daven S.
    Jamil, Ferdinand P.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01): : 149 - 163
  • [9] Velammal S., 2011, Indian J. Appl. Res., V1, P180
  • [10] Wang H., 2017, arXiv