Matrix-weighted Besov-Triebel-Lizorkin spaces with logarithmic smoothness

被引:4
作者
Li, Ziwei [1 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 193卷
基金
中国国家自然科学基金;
关键词
Besov-Triebel-Lizorkin space; Matrix weight; A(p) dimension; Logarithmic smoothness; Peetre maximal function; Pointwise multiplier; POINTWISE MULTIPLIERS; SHARP EMBEDDINGS; A(P) WEIGHTS; INEQUALITIES; WAVELETS; DUALITY;
D O I
10.1016/j.bulsci.2024.103445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the authors study the matrix -weighted Besov- Triebel-Lizorkin spaces with logarithmic smoothness. Via first obtaining the L p ( R n )-boundedness and the Fefferman- Stein type vector -valued inequality of matrix -weighted Peetretype maximal functions with the exquisite ranges of indices in terms of the A p dimension of matrix weights under consideration, the authors establish an equivalent characterization of these spaces in terms of the matrix -weighted Peetretype maximal functions, which further implies that these spaces are well defined. As an application, the authors obtain the boundedness of some pointwise multipliers on these spaces and, even back to classical Besov-Triebel-Lizorkin spaces, some of them are also new. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:54
相关论文
共 72 条
[1]  
Amann H., 2019, Function Spaces, VII
[2]   Duality for logarithmic interpolation spaces when 0 < q < 1 and applications [J].
Besoy, Blanca F. ;
Cobos, Fernando .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :373-399
[3]   Pointwise Multipliers of Zygmund Classes on Rn [J].
Bonami, Aline ;
Liu, Liguang ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) :8879-8902
[4]   Inverse volume inequalities for matrix weights [J].
Bownik, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :383-410
[5]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[6]  
Bu F, 2025, MATH ANN, V391, P6105, DOI 10.1007/s00208-024-03059-5
[7]   Real-variable characterizations and their applications of matrix-weighted Besov spaces on spaces of homogeneous type [J].
Bu, Fan ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (01)
[8]   Sharp embeddings of Besov spaces involving only logarithmic smoothness [J].
Caetano, Antonio M. ;
Gogatishvili, Amiran ;
Opic, Bohumir .
JOURNAL OF APPROXIMATION THEORY, 2008, 152 (02) :188-214
[9]   Vector A2 weights and a Hardy-Littlewood maximal function [J].
Christ, M ;
Goldberg, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1995-2002
[10]   On the Relationship Between Two Kinds of Besov Spaces with Smoothness Near Zero and Some Other Applications of Limiting Interpolation [J].
Cobos, Fernando ;
Dominguez, Oscar .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (05) :1174-1191