Lossless Phonon Transition Through GaN-Diamond and Si-Diamond Interfaces

被引:7
|
作者
Malakoutian, Mohamadali [1 ]
Woo, Kelly [1 ]
Rich, Dennis [1 ]
Mandia, Ramandeep [2 ]
Zheng, Xiang [3 ]
Kasperovich, Anna [1 ]
Saraswat, Devansh [1 ]
Soman, Rohith [1 ]
Jo, Youhwan [4 ]
Pfeifer, Thomas [5 ]
Hwang, Taesoon [4 ]
Aller, Henry [6 ]
Kim, Jeongkyu [1 ]
Lyu, Junrui [1 ]
Mabrey, Janelle Keionna [1 ]
Rodriguez, Thomas Andres [1 ]
Pomeroy, James [3 ]
Hopkins, Patrick E. [5 ]
Graham, Samuel [6 ]
Smith, David J. [2 ]
Mitra, Subhasish [1 ]
Cho, Kyeongjae [4 ]
Kuball, Martin [3 ]
Chowdhury, Srabanti [1 ]
机构
[1] Stanford Univ, 450 Jane Stanford Way, Stanford, CA 94305 USA
[2] Arizona State Univ, 1151 S Forest Ave, Tempe, AZ 85287 USA
[3] Univ Bristol, Tyndall Ave, Bristol BS8 1TL, England
[4] Univ Texas Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
[5] Univ Virginia, 351 McCormick Rd, Charlottesville, VA 22904 USA
[6] Univ Maryland, College Pk, MD 20742 USA
来源
ADVANCED ELECTRONIC MATERIALS | 2025年 / 11卷 / 01期
关键词
diamond; interface engineering; Moore's law; thermal boundary resistance; thermal management; ultra-wide-bandgap; wide-bandgap; THERMAL-CONDUCTIVITY; CONDUCTANCE;
D O I
10.1002/aelm.202400146
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self-heating in the upper tiers degrades the performance. Self-heating is a critical problem for high-power, high-frequency, wide bandgap, and ultra-wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous- Silicon Carbide (a-SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)-diamond and Si-diamond interfaces. The a-SiC interlayer reduces diamond/GaN (<5 m(2)K per GW) and diamond/Si (<2 m(2)K per GW) thermal boundary resistances by linking low- and high-frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications
    Cho, Jungwan
    Li, Zijian
    Bozorg-Grayeli, Elah
    Kodama, Takashi
    Francis, Daniel
    Ejeckam, Felix
    Faili, Firooz
    Asheghi, Mehdi
    Goodson, Kenneth E.
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (01): : 79 - 85
  • [2] The Effect of Pore Defects on the Interfacial Thermal Resistance of GaN-Diamond Heterostructure
    Yang, Chao
    Zhao, Pengfei
    Wang, Jian
    Ma, Dezhi
    He, Zhiyuan
    Fu, Zhiwei
    Yang, Jia-Yue
    2023 24TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, ICEPT, 2023,
  • [3] Heat transport exploration through the GaN/diamond interfaces using machine learning potential
    Sun, Zhanpeng
    Song, Yunfei
    Qi, Zijun
    Sun, Xiang
    Liao, Meiyong
    Li, Rui
    Wang, Qijun
    Li, Lijie
    Wu, Gai
    Shen, Wei
    Liu, Sheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 241
  • [4] Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices
    Yates, Luke
    Anderson, Jonathan
    Gu, Xing
    Lee, Cathy
    Bai, Tingyu
    Mecklenburg, Matthew
    Aoki, Toshihiro
    Goorsky, Mark S.
    Kuball, Martin
    Piner, Edwin L.
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) : 24302 - 24309
  • [5] Effect of surface vacancy defects on the phonon thermal transport across GaN/diamond interface
    Wu, Kongping
    Cheng, Renxiang
    Zhang, Leng
    Wang, Wenxiu
    Li, Fangzhen
    Liao, Meiyong
    SURFACES AND INTERFACES, 2025, 56
  • [6] Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy
    Cheng, Zhe
    Bai, Tingyu
    Shi, Jingling
    Feng, Tianli
    Wang, Yekan
    Mecklenburg, Matthew
    Li, Chao
    Hobart, Karl D.
    Feygelson, Tatyana I.
    Tadjer, Marko J.
    Pate, Bradford B.
    Foley, Brian M.
    Yates, Luke
    Pantelides, Sokrates T.
    Cola, Baratunde A.
    Goorsky, Mark
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18517 - 18527
  • [7] Preparation of nano-diamond films on GaN with a Si buffer layer
    Liu Jin-long
    Tian Han-mei
    Chen Liang-xian
    Wei Jun-jun
    Hei Li-fu
    Li Cheng-ming
    NEW CARBON MATERIALS, 2016, 31 (05) : 518 - 524
  • [8] Significantly Enhanced Interfacial Thermal Conductance across GaN/Diamond Interfaces Utilizing Alx Ga1-x N as a Phonon Bridge
    Wu, Kongping
    Chang, Guoqing
    Ye, Jiandong
    Zhang, Gang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 58880 - 58890
  • [9] Diamond(001)-Si(001) and Si(001)-Ti(0001) interfaces: A density functional theory study
    Wang, Junjun
    Huang, Xin
    Zhang, Honglin
    Wang, Linqing
    Huang, Weijiu
    Kuang, Shaofu
    Huang, Fuxiang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 150
  • [10] Diamond(001)-Si(001) and Si(001)-Ti(0001) interfaces: A density functional theory study
    Wang, Junjun
    Huang, Xin
    Zhang, Honglin
    Wang, Linqing
    Huang, Weijiu
    Kuang, Shaofu
    Huang, Fuxiang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 145 (145)