Bifacial Wide-Gap (Ag,Cu)(In,Ga)Se2 Solar Cell with 13.6% Efficiency Using In2O3:W as a Back Contact Material

被引:7
作者
Keller, Jan [1 ]
Stolt, Lars [1 ]
Donzel-Gargand, Olivier [1 ]
Violas, Andre F. [2 ,3 ]
Kubart, Tomas [4 ]
Edoff, Marika [1 ]
机构
[1] Uppsala Univ, Div Solar Cell Technol, Angstrom Lab, S-75121 Uppsala, Sweden
[2] Int Iberian Nanotechnol Lab, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal
[3] Aveiro Univ, Phys Dept, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[4] Uppsala Univ, Div Solid State Elect, Angstrom Lab, S-75121 Uppsala, Sweden
关键词
CIGS; In2O3:W; silver alloying; tandem device; wide-gap solar cell; DOPED INDIUM OXIDE; RECOMBINATION; FABRICATION; DEPOSITION; STABILITY; CUGASE2; CU(IN; FRONT; LAYER; FILMS;
D O I
10.1002/solr.202400430
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study evaluates In2O3:W as a transparent back contact material in wide-gap (bandgap range = 1.44-1.52 eV) (Ag,Cu)(In,Ga)Se2 (ACIGS) solar cells for potential application as a top cell in a tandem device. High silver concentrations and close-stoichiometric absorber compositions result in a complete depletion of free charge carriers, allowing for decent electron collection, despite the low diffusion length. Remarkable efficiencies of 13.6% and 7.5% are reached using 1 mu m- and 400 nm-thick absorbers, respectively. At rear illumination (i.e., superstrate backwall), the best cell shows an efficiency of 8.7%. For each of the four analyzed samples, the short-circuit current at rear illumination reaches at least 60% of the value at front illumination. Losses arise from recombination at the back contact and a too low drift/diffusion length. The parasitic absorption by the transparent electrodes for photon energies close to the bandgap of a potential Si bottom cell (1.1 eV) is close to 15%. Strategies to reduce this value and to further increase the efficiency are discussed.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells [J].
Abou-Ras, D ;
Kostorz, G ;
Bremaud, D ;
Kälin, M ;
Kurdesau, FV ;
Tiwari, AN ;
Döbeli, M .
THIN SOLID FILMS, 2005, 480 :433-438
[2]   Alkali Dispersion in (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells-Insight from Theory and Experiment [J].
Aboulfadl, Hisham ;
Sopiha, Kostiantyn, V ;
Keller, Jan ;
Larsen, Jes K. ;
Scragg, Jonathan J. S. ;
Persson, Clas ;
Thuvander, Mattias ;
Edoff, Marika .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (06) :7188-7199
[3]   Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor [J].
Aikawa, Shinya ;
Darmawan, Peter ;
Yanagisawa, Keiichi ;
Nabatame, Toshihide ;
Abe, Yoshiyuki ;
Tsukagoshi, Kazuhito .
APPLIED PHYSICS LETTERS, 2013, 102 (10)
[4]   Correlation of structure parameters of absorber layer with efficiency of Cu(In, Ga)Se2 solar cell [J].
Balboul, M. R. ;
Schock, H. W. ;
Fayak, S. A. ;
El-Aal, A. Abdel ;
Werner, J. H. ;
Ramadan, A. A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 92 (03) :557-563
[5]   Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys [J].
Boyle, J. H. ;
McCandless, B. E. ;
Shafarman, W. N. ;
Birkmire, R. W. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
[6]   Structural characterization of the (AgCu)(InGa)Se2 thin film alloy system for solar cells [J].
Boyle, J. H. ;
McCandless, B. E. ;
Hanket, G. M. ;
Shafarman, W. N. .
THIN SOLID FILMS, 2011, 519 (21) :7292-7295
[7]  
Boyle J, 2009, IEEE PHOT SPEC CONF, P861, DOI 10.1109/PVSC.2009.5411272
[8]   Limiting efficiency for a multi-band solar cell containing three and four bands [J].
Brown, AS ;
Green, MA ;
Corkish, RP .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) :121-125
[9]  
Caballero R, 2006, WORL CON PHOTOVOLT E, P479
[10]   Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film [J].
Cadel, E. ;
Barreau, N. ;
Kessler, J. ;
Pareige, P. .
ACTA MATERIALIA, 2010, 58 (07) :2634-2637