A Machine Learning Model to Predict the Histology of Retroperitoneal Lymph Node Dissection Specimens

被引:1
作者
Nitta, Satoshi [1 ]
Kojima, Takahiro [2 ]
Gido, Masanobu [3 ]
Nakagawa, Shota [3 ]
Kakeya, Hideki [3 ]
Kandori, Shuya [1 ]
Kawahara, Takashi [1 ]
Mathis, Bryan J. [4 ]
Kawai, Koji [5 ]
Negoro, Hiromitsu [1 ]
Nishiyama, Hiroyuki [1 ]
机构
[1] Univ Tsukuba, Fac Med, Dept Urol, Tsukuba, Japan
[2] Aichi Canc Ctr Hosp, Dept Urol, 1-1 Kanokoden,Chikusa Ku, Nagoya, Aichi 4648681, Japan
[3] Univ Tsukuba, Grad Sch Syst & Informat Engn, Dept Intelligent Funct Syst, Tsukuba, Japan
[4] Univ Tsukuba, Int Med Ctr, Affiliated Hosp, Tsukuba, Japan
[5] Int Univ Hlth & Welf, Narita Hosp, Fac Med, Dept Urol, Narita, Japan
关键词
Germ cell tumor; machine learning model; post- chemotherapy retroperitoneal lymph node dissection; Resnet50; algorithm; support vector machine; GERM-CELL TUMORS; CANCER; CHEMOTHERAPY; RADIOMICS; BENIGN;
D O I
10.21873/anticanres.17021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background/Aim: While post -chemotherapy retroperitoneal lymph node dissection (PC-RPLND) benefits patients with teratoma or viable germ cell tumors (GCT), it becomes overtreatment if necrosis is detected in PC-RPLND specimens. Serum microRNA-371a-3p correctly predicts residual viable GCT with 100% sensitivity; however, prediction of residual teratoma in PC-RPLND specimens using current modalities remains difficult. Therefore, we developed a machine learning model using CT imaging and clinical variables to predict the presence of residual teratoma in PC-RPLND specimens. Patients and Methods: This study included 58 patients who underwent PC-RPLND between 2005 and 2019 at the University of Tsukuba Hospital. On CT imaging, 155 lymph nodes were identified as regions of interest (ROIs). The ResNet50 algorithm and/or Support Vector Machine (SVM) classification were applied and a nested, 3 -fold cross -validation protocol was used to determine classifier accuracy. Results: PC-RPLND specimen analysis revealed 35 patients with necrosis and 23 patients with residual teratoma, while histology of 155 total ROIs showed necrosis in 84 ROIs and teratoma in 71 ROIs. The ResNet50 algorithm, using CT imaging, achieved a diagnostic accuracy of 80.0%, corresponding to a sensitivity of 67.3%, a specificity of 90.5%, and an AUC of 0.84, whereas SVM classification using clinical variables achieved a diagnostic accuracy of 74.8%, corresponding to a sensitivity of 59.0%, a specificity of 88.1%, and an AUC of 0.84. Conclusion: Our machine learning models reliably distinguish between necrosis and residual teratoma in clinical PC-RPLND specimens.
引用
收藏
页码:2151 / 2157
页数:7
相关论文
共 27 条
[1]   Guidelines on Testicular Cancer: 2015 Update [J].
Albers, Peter ;
Albrecht, Walter ;
Algaba, Ferran ;
Bokemeyer, Carsten ;
Cohn-Cedermark, Gabriella ;
Fizazi, Karim ;
Horwich, Alan ;
Laguna, Maria Pilar ;
Nicolai, Nicola ;
Oldenburg, Jan .
EUROPEAN UROLOGY, 2015, 68 (06) :1054-1068
[2]   Deep ensemble learning for Alzheimer's disease classification [J].
An, Ning ;
Ding, Huitong ;
Yang, Jiaoyun ;
Au, Rhoda ;
Ang, Ting F. A. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 105
[3]  
[Anonymous], 2007, Campbell-Walsh Urology
[4]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[5]   Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection [J].
Baessler, Bettina ;
Nestler, Tim ;
dos Santos, Daniel ;
Paffenholz, Pia ;
Zeuch, Vikram ;
Pfister, David ;
Maintz, David ;
Heidenreich, Axel .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2334-2345
[6]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[7]   An ensemble learning approach for brain cancer detection exploiting radiomic features [J].
Brunese, Luca ;
Mercaldo, Francesco ;
Reginelli, Alfonso ;
Santone, Antonella .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 185
[8]   Percentage of Teratoma in Orchiectomy and Risk of Retroperitoneal Teratoma at the Time of Postchemotherapy Retroperitoneal Lymph Node Dissection in Germ Cell Tumors [J].
Calaway, Adam C. ;
Kern, Sean Q. ;
Crook, David ;
Tong, Yan ;
Masterson, Timothy A. ;
Adra, Nabil ;
Einhorn, Lawrence H. ;
Foster, Richard S. ;
Cary, Clint .
JOURNAL OF UROLOGY, 2021, 206 (06) :1430-1436
[9]   Improved clinical outcome in recent years for men with metastatic nonseminomatous germ cell tumors [J].
Carver, Brett S. ;
Serio, Angel M. ;
Bajorin, Dean ;
Motzer, Robert J. ;
Stasi, Jason ;
Bosl, George J. ;
Vickers, Andrew J. ;
Sheinfeld, Joel .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (35) :5603-5608
[10]   The Impact of Bleomycin on Retroperitoneal Histology at Post-Chemotherapy Retroperitoneal Lymph Node Dissection of Good Risk Germ Cell Tumors [J].
Cary, K. Clint ;
Pedrosa, Jose A. ;
Kaimakliotis, Hristos Z. ;
Masterson, Timothy A. ;
Einhorn, Lawrence H. ;
Foster, Richard S. .
JOURNAL OF UROLOGY, 2015, 193 (02) :507-512