The Emergence of the Potential Therapeutic Targets: Ultrasound- Based Radiomics in the Prediction of Human Epidermal Growth Factor Receptor 2-Low Breast Cancer

被引:10
作者
Du, Yu [1 ]
Li, Fang [1 ]
Zhang, Manqi [2 ]
Pan, Jiazhen [3 ,4 ,5 ]
Wu, Tingting [1 ]
Zheng, Yi [1 ]
Chen, Jing
Yao, Minghua [1 ]
Kuang, Yi [1 ]
Wu, Rong [1 ]
Diao, Xuehong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Ultrasound, Sch Med, 100 Haining Rd, Shanghai 200080, Peoples R China
[2] Nanjing Med Univ, Dept Ultrasound, Affiliated Hosp 1, 300 Guangzhou Rd, Nanjing 210029, Peoples R China
[3] Nanjing Med Univ, Jiangsu Canc Hosp, Dept Ultrasound, 42 Baiziting, Nanjing 210009, Peoples R China
[4] Nanjing Med Univ, Jiangsu Inst Canc Res, 42 Baiziting, Nanjing 210009, Peoples R China
[5] Nanjing Med Univ, Affiliated Canc Hosp, 42 Baiziting, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast neoplasms; Ultrasonography; Radiomics; HER2-low; HER2; STATUS;
D O I
10.1016/j.acra.2024.01.023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: To evaluate whether ultrasound-based radiomics features can effectively predict HER2-low expression in patients with breast cancer (BC). Material and Methods: Between January 2021 and June 2023, patients who received US scans with pathologically confirmed BC in this multicenter study were included. In total, 383 patients from institution 1 were comprised of training set, 233 patients from institution 2 were comprised of validation set and 149 patients from institution 3 were comprised of external validation set. Radiomics features were derived from conventional ultrasound (US) images. The minimum redundancy and maximum relevancy and the least absolute shrinkage and selector operation algorithm were used to generate an US-based radiomics score (RS). Multivariable logistic regression analysis was used to select variables associated with HER2 expressions. The diagnostic performance of the RS was evaluated through the area under the receiver operating characteristic curve (AUC). Results: In the training set, the RS yield an AUC of 0.81 (95%CI: 0.76-0.84) for differentiation HER2-zero from HER2-low and-positive cases, and performed well in validation set (AUC 0.84, 95%CI: 0.78-0.88) and external validation set (AUC 0.82, 95%CI: 0.73-0.90). In the subgroups analysis, the RS showed good performance in distinguishing HER2-zero from HER2 1 + , HER2 2 + and HER2-low tumors (AUC range, 0.79-0.87). Conclusion: The RS based on conventional US is proven effective for predicting HER2-low expression in BC.
引用
收藏
页码:2674 / 2683
页数:10
相关论文
共 30 条
[1]   Harmonization of multi-site MRS data with ComBat [J].
Bell, Tiffany K. ;
Godfrey, Kate J. ;
Ware, Ashley L. ;
Yeates, Keith Owen ;
Harris, Ashley D. .
NEUROIMAGE, 2022, 257
[2]   Potential Antihuman Epidermal Growth Factor Receptor 2 Target Therapy Beneficiaries: The Role of MRI-Based Radiomics in Distinguishing Human Epidermal Growth Factor Receptor 2-Low Status of Breast Cancer [J].
Bian, Xiaoqian ;
Du, Siyao ;
Yue, Zhibin ;
Gao, Si ;
Zhao, Ruimeng ;
Huang, Guoliang ;
Guo, Liangcun ;
Peng, Can ;
Zhang, Lina .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (05) :1603-1614
[3]   MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer [J].
Bitencourt, Almir G., V ;
Gibbs, Peter ;
Saccarelli, Carolina Rossi ;
Daimiel, Isaac ;
Lo Gullo, Roberto ;
Fox, Michael J. ;
Thakur, Sunitha ;
Pinker, Katja ;
Morris, Elizabeth A. ;
Morrow, Monica ;
Jochelson, Maxine S. .
EBIOMEDICINE, 2020, 61
[4]   Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population [J].
Chen, Ruixian ;
Qi, Yana ;
Huang, Ya ;
Liu, Weijing ;
Yang, Ruoning ;
Zhao, Xin ;
Wu, Yunhao ;
Li, Qintong ;
Wang, Zhu ;
Sun, Xin ;
Wei, Bing ;
Chen, Jie .
BREAST CANCER RESEARCH AND TREATMENT, 2023, 197 (01) :189-200
[5]   Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions [J].
Cui, Hao ;
Sun, Yue ;
Zhao, Dantong ;
Zhang, Xudong ;
Kong, Hanqing ;
Hu, Nana ;
Wang, Panting ;
Zuo, Xiaoxuan ;
Fan, Wei ;
Yao, Yuan ;
Fu, Baiyang ;
Tian, Jiawei ;
Wu, Meixin ;
Gao, Yue ;
Ning, Shangwei ;
Zhang, Lei .
JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
[6]   Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials [J].
Denkert, Carsten ;
Seither, Fenja ;
Schneeweiss, Andreas ;
Link, Theresa ;
Blohmer, Jens-Uwe ;
Just, Marianne ;
Wimberger, Pauline ;
Forberger, Almuth ;
Tesch, Hans ;
Jackisch, Christian ;
Schmatloch, Sabine ;
Reinisch, Mattea ;
Solomayer, Erich F. ;
Schmitt, Wolfgang D. ;
Hanusch, Claus ;
Fasching, Peter A. ;
Luebbe, Kristina ;
Solbach, Christine ;
Huober, Jens ;
Rhiem, Kerstin ;
Marme, Frederik ;
Reimer, Toralf ;
Schmidt, Marcus ;
Sinn, Bruno, V ;
Janni, Wolfgang ;
Stickeler, Elmar ;
Michel, Laura ;
Stoetzer, Oliver ;
Hahnen, Eric ;
Furlanetto, Jenny ;
Seiler, Sabine ;
Nekljudova, Valentina ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2021, 22 (08) :1151-1161
[7]   Imaging of triple-negative breast cancer [J].
Dogan, B. E. ;
Turnbull, L. W. .
ANNALS OF ONCOLOGY, 2012, 23 :23-29
[8]   Ultrasound-based radiomics nomogram for differentiation of triple-negative breast cancer from fibroadenoma [J].
Du, Yu ;
Zha, Hai-Ling ;
Wang, Hui ;
Liu, Xin-Pei ;
Pan, Jia-Zhen ;
Du, Li-Wen ;
Cai, Meng-Jun ;
Zong, Min ;
Li, Cui-Ying .
BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1133)
[9]   Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: A multicenter study [J].
Fang, Caiyun ;
Zhang, Juntao ;
Li, Jizhen ;
Shang, Hui ;
Li, Kejian ;
Jiao, Tianyu ;
Yin, Di ;
Li, Fuyan ;
Cui, Yi ;
Zeng, Qingshi .
FRONTIERS IN ONCOLOGY, 2022, 12
[10]   Examination of Low ERBB2 Protein Expression in Breast Cancer Tissue [J].
Fernandez, Aileen, I ;
Liu, Matthew ;
Bellizzi, Andrew ;
Brock, Jane ;
Fadare, Oluwole ;
Hanley, Krisztina ;
Harigopal, Malini ;
Jorns, Julie M. ;
Kuba, M. Gabriela ;
Ly, Amy ;
Podoll, Mirna ;
Rabe, Kimmie ;
Sanders, Mary Ann ;
Singh, Kamaljeet ;
Snir, Olivia L. ;
Soong, T. Rinda ;
Wei, Shi ;
Wen, Hannah ;
Wong, Serena ;
Yoon, Esther ;
Pusztai, Lajos ;
Reisenbichler, Emily ;
Rimm, David L. .
JAMA ONCOLOGY, 2022, 8 (04) :607-610