An effective partition-based framework for virtual machine migration in cloud services

被引:2
作者
Luo, Liji [1 ]
Wei, Siwei [2 ]
Tang, Hua [1 ]
Wang, Chunzhi [3 ]
机构
[1] Hubei Univ Technol, Informat Technol Ctr, Wuhan, Peoples R China
[2] CCCC Second Highway Consultants Co Ltd, Wuhan, Peoples R China
[3] Hubei Univ Technol, Sch Comp Sci, Wuhan, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2024年 / 27卷 / 09期
关键词
Cloud computing; Service level agreements; Virtual machine; Interpolation exponential smoothing; Workload evaluation; DATA CENTERS; ENERGY; ALLOCATION; PLACEMENT; ALGORITHM; CONSOLIDATION;
D O I
10.1007/s10586-024-04610-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the scale of data centers continues to expand, optimizing resource utilization becomes increasingly critical. Employing virtual machine (VM) migration technology to maintain hosts within an appropriate workload range holds substantial promise for enhancing platform resource utilization, workload equilibrium, and energy efficiency. This study endeavors to reframe virtual machine migration as a partition problem and introduces an integrated framework that adeptly evaluate workload status and precisely identifies the optimal migration target, thus mitigating the expenses associated with virtual machine migration. Our framework commences by employing workload prediction to evaluate host status for determining the most opportune timing for migration. Subsequently, we leverage Service Level Agreements (SLA) violation as the optimization objective to ascertain the optimal status threshold, thereby facilitating effective workload partition of the host. Finally, the framework employs multi-dimensional host resource balance as a guide to schedule host migration in diverse areas, ensuring robust resource utilization post-migration. Experimental results show that compared with three benchmark VM allocation algorithms, SESA, PPRG, and ThrRs. Our framework achieves a significant 17%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17\%$$\end{document} increase in multidimensional resource utilization across various types of data centers, accompanied by a noteworthy 27%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$27\%$$\end{document} reduction in SLA violation rate with fewer time consumption and energy expenditure during VM migration.
引用
收藏
页码:12899 / 12917
页数:19
相关论文
共 51 条
[1]   Energy Efficient Virtual Machines Placement Over Cloud-Fog Network Architecture [J].
Alharbi, Hatem A. ;
Elgorashi, Taisir E. H. ;
Elmirghani, Jaafar M. H. .
IEEE ACCESS, 2020, 8 (08) :94697-94718
[2]   Using Virtual Machine live migration in trace-driven energy-aware simulation of high-throughput computing systems [J].
Alrajeh, Osama ;
Forshaw, Matthew ;
Thomas, Nigel .
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 29
[3]   Live Migration of Virtual Machines Using a Mamdani Fuzzy Inference System [J].
Alyas, Tahir ;
Javed, Iqra ;
Namoun, Abdallah ;
Tufail, Ali ;
Alshmrany, Sami ;
Tabassum, Nadia .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02) :3019-3033
[4]  
Bahrami M., 2021, TURK J COMPUT MATH E, V12, P5342
[5]   Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers [J].
Beloglazov, Anton ;
Buyya, Rajkumar .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012, 24 (13) :1397-1420
[6]  
Calheiros R. N., 2009, ARXIV
[7]   A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing [J].
Cho, Keng-Mao ;
Tsai, Pang-Wei ;
Tsai, Chun-Wei ;
Yang, Chu-Sing .
NEURAL COMPUTING & APPLICATIONS, 2015, 26 (06) :1297-1309
[8]   A multitime-steps-ahead prediction approach for scheduling live migration in cloud data centers [J].
Duggan, M. ;
Shaw, R. ;
Duggan, J. ;
Howley, E. ;
Barrett, E. .
SOFTWARE-PRACTICE & EXPERIENCE, 2019, 49 (04) :617-639
[9]   A prediction-based model for virtual machine live migration monitoring in a cloud datacenter [J].
El Motaki, Saloua ;
Yahyaouy, Ali ;
Gualous, Hamid .
COMPUTING, 2021, 103 (11) :2711-2735
[10]   Elastic Resource Provisioning Using Data Clustering in Cloud Service Platform [J].
Fei, Bowen ;
Zhu, Xiaomin ;
Liu, Daqian ;
Chen, Junjie ;
Bao, Weidong ;
Liu, Ling .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (03) :1578-1591