Dilute Donor Organic Solar Cells Based on Non-fullerene Acceptors

被引:2
|
作者
Mcanally, Shaun [1 ]
Jin, Hui [1 ]
Chu, Ronan [1 ]
Mallo, Neil [1 ]
Wang, Xiao [1 ]
Burn, Paul L. [1 ]
Gentle, Ian R. [1 ]
Shaw, Paul E. [1 ]
机构
[1] Univ Queensland, Ctr Organ Photon & Elect, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
关键词
organic solar cell; non-fullerene acceptor; film morphology; charge transport; internal quantumefficiency; INTERNAL QUANTUM EFFICIENCY; OPEN-CIRCUIT-VOLTAGE; CHARGE-TRANSPORT; SCATTERING; ENABLES;
D O I
10.1021/acsami.4c02864
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The advent of small molecule non-fullerene acceptor (NFA) materials for organic photovoltaic (OPV) devices has led to a series of breakthroughs in performance and device lifetime. The most efficient OPV devices have a combination of electron donor and acceptor materials that constitute the light absorbing layer in a bulk heterojunction (BHJ) structure. For many BHJ-based devices reported to date, the weight ratio of donor to acceptor is near equal. However, the morphology of such films can be difficult to reproduce and manufacture at scale. There would be an advantage in developing a light harvesting layer for efficient OPV devices that contains only a small amount of either the donor or acceptor. In this work we explore low donor content OPV devices composed of the polymeric donor PM6 blended with high performance NFA materials, Y6 or ITIC-4F. We found that even when the donor:acceptor weight ratio was only 1:10, the OPV devices still have good photoconversion efficiencies of around 6% and 5% for Y6 and ITIC-4F, respectively. It was found that neither charge mobility nor recombination rates had a strong effect on the efficiency of the devices. Rather, the overall efficiency was strongly related to the film absorption coefficient and maintaining adequate interfacial surface area between donor and acceptor molecules/phases for efficient exciton dissociation.
引用
收藏
页码:28958 / 28968
页数:11
相关论文
共 50 条
  • [1] Non-Fullerene Acceptors for Organic Solar Cells
    Trukhanov, V. A.
    Paraschuk, D. Yu.
    POLYMER SCIENCE SERIES C, 2014, 56 (01) : 72 - 83
  • [2] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128
  • [3] Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors
    Guo, Yawen
    Li, Dawei
    Gao, Yang
    Li, Cuihong
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (06)
  • [4] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [5] Ternary organic solar cells based on non-fullerene acceptors: A review
    Chang, Lichun
    Sheng, Ming
    Duan, Leiping
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2021, 90
  • [6] A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells
    Armin, Ardalan
    Li, Wei
    Sandberg, Oskar J.
    Xiao, Zuo
    Ding, Liming
    Nelson, Jenny
    Neher, Dieter
    Vandewal, Koen
    Shoaee, Safa
    Wang, Tao
    Ade, Harald
    Heumueller, Thomas
    Brabec, Christoph
    Meredith, Paul
    ADVANCED ENERGY MATERIALS, 2021, 11 (15)
  • [7] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [8] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [9] Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors
    Liu, Baiqiao
    Xu, Yunhua
    Xia, Dongdong
    Xiao, Chengyi
    Yang, Zhaofan
    Li, Weiwei
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (03) : 1 - 16
  • [10] Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells
    Zhang, Linhua
    Chen, Zhili
    Sun, Fengbo
    Wang, Yinuo
    Bao, Hanyi
    Gao, Xiang
    Liu, Zhitian
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (08) : 4224 - 4237