A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli

被引:2
作者
Liu, Ting [1 ,2 ]
Kim, Miju [1 ,2 ,3 ]
Fan, Peixin [1 ,2 ,6 ]
Boughton, Raoul K. [4 ]
Boucher, Christina [1 ,2 ,5 ]
机构
[1] Univ Florida, Emerging Pathogens Inst, 2055 Mowry Rd, Gainesville, FL 32611 USA
[2] Univ Florida, Coll Agr & Life Sci, Dept Anim Sci, Gainesville, FL 32611 USA
[3] Kyung Hee Univ, Dept Food Sci & Biotechnol, Yongin, South Korea
[4] Univ Florida, Range Cattle Res & Educ Ctr, Wildlife Ecol & Conservat, Gainesville, FL 33865 USA
[5] Univ Florida, Herbert Wertheim Coll Engn, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
[6] Mississippi State Univ, Dept Anim & Dairy Sci, Mississippi State, MS USA
基金
美国食品与农业研究所;
关键词
Antimicrobial resistance; Wildlife; Extended-spectrum beta-lactamase producing; pathogen; KLEBSIELLA-PNEUMONIAE; ISECP1B-MEDIATED MOBILIZATION; ANTIBIOTIC-RESISTANCE; PLASMID; ENVIRONMENT; BLA(CTX-M); PREVALENCE; GENE; TRANSMISSION; SALMONELLA;
D O I
10.1016/j.jhazmat.2024.134694
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBLproducing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.
引用
收藏
页数:14
相关论文
共 75 条
[1]   CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database [J].
Alcock, Brian P. ;
Raphenya, Amogelang R. ;
Lau, Tammy T. Y. ;
Tsang, Kara K. ;
Bouchard, Megane ;
Edalatmand, Arman ;
Huynh, William ;
Nguyen, Anna-Lisa, V ;
Cheng, Annie A. ;
Liu, Sihan ;
Min, Sally Y. ;
Miroshnichenko, Anatoly ;
Tran, Hiu-Ki ;
Werfalli, Rafik E. ;
Nasir, Jalees A. ;
Oloni, Martins ;
Speicher, David J. ;
Florescu, Alexandra ;
Singh, Bhavya ;
Faltyn, Mateusz ;
Hernandez-Koutoucheva, Anastasia ;
Sharma, Arjun N. ;
Bordeleau, Emily ;
Pawlowski, Andrew C. ;
Zubyk, Haley L. ;
Dooley, Damion ;
Griffiths, Emma ;
Maguire, Finlay ;
Winsor, Geoff L. ;
Beiko, Robert G. ;
Brinkman, Fiona S. L. ;
Hsiao, William W. L. ;
Domselaar, Gary, V ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D517-D525
[2]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[3]   Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype [J].
Bevan, Edward R. ;
Jones, Annie M. ;
Hawkey, Peter M. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (08) :2145-2155
[4]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[5]   Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections [J].
Camelena, Francois ;
de Ponfilly, Gauthier Pean ;
Pailhories, Helene ;
Bonzon, Lucas ;
Alanio, Alexandre ;
Poncin, Thibaut ;
Lafaurie, Matthieu ;
Depret, Francois ;
Cambau, Emmanuel ;
Godreuil, Sylvain ;
Chenouard, Rachel ;
Le Monnier, Alban ;
Jacquier, Herve ;
Bercot, Beatrice .
MICROBIOLOGY SPECTRUM, 2023, 11 (01)
[6]   CTX-M enzymes: origin and diffusion [J].
Canton, Rafael ;
Maria Gonzlez-Alba, Jose ;
Carlos Galan, Juan .
FRONTIERS IN MICROBIOLOGY, 2012, 3
[7]   In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing [J].
Carattoli, Alessandra ;
Zankari, Ea ;
Garcia-Fernandez, Aurora ;
Larsen, Mette Voldby ;
Lund, Ole ;
Villa, Laura ;
Aarestrup, Frank Moller ;
Hasman, Henrik .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (07) :3895-3903
[8]   VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on [J].
Chen, Lihong ;
Zheng, Dandan ;
Liu, Bo ;
Yang, Jian ;
Jin, Qi .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D694-D697
[9]   Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli [J].
Choi, Yujin ;
Lee, Ji-Young ;
Lee, Haejeong ;
Park, Myungseo ;
Kang, KyeongJin ;
Lim, Suk-Kyung ;
Shin, Dongwoo ;
Ko, Kwan Soo .
FRONTIERS IN MICROBIOLOGY, 2020, 11
[10]   Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae [J].
Chong, Yong ;
Ito, Yoshikiyo ;
Kamimura, Tomohiko .
INFECTION GENETICS AND EVOLUTION, 2011, 11 (07) :1499-1504