Online Non-Convex Optimization with Imperfect Feedback

被引:0
|
作者
Heliou, Amelie [1 ]
Martin, Matthieu [1 ]
Mertikopoulos, Panayotis [1 ,2 ]
Rahier, Thibaud [1 ]
机构
[1] Criteo AI Lab, Paris, France
[2] Univ Grenoble Alpes, CNRS, INRIA, LIG, Grenoble, France
关键词
ALGORITHM; REGRET;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of online learning with non-convex losses. In terms of feedback, we assume that the learner observes - or otherwise constructs - an inexact model for the loss function encountered at each stage, and we propose a mixed-strategy learning policy based on dual averaging. In this general context, we derive a series of tight regret minimization guarantees, both for the learner's static (external) regret, as well as the regret incurred against the best dynamic policy in hindsight. Subsequently, we apply this general template to the case where the learner only has access to the actual loss incurred at each stage of the process. This is achieved by means of a kernel-based estimator which generates an inexact model for each round's loss function using only the learner's realized losses as input.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Online Optimization with Predictions and Non-convex Losses
    Lin, Yiheng
    Goel, Gautam
    Wierman, Adam
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2020, 4 (01)
  • [2] Online Optimization with Predictions and Non-convex Losses
    Lin, Yiheng
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [3] Non-Convex Feedback Optimization With Input and Output Constraints
    Haberle, Verena
    Hauswirth, Adrian
    Ortmann, Lukas
    Bolognani, Saverio
    Dorfler, Florian
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 343 - 348
  • [4] Distributed Online Non-convex Optimization with Composite Regret
    Jiang, Zhanhong
    Balu, Aditya
    Lee, Xian Yeow
    Lee, Young M.
    Hegde, Chinmay
    Sarkar, Soumik
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [5] Non-convex scenario optimization
    Garatti, Simone
    Campi, Marco C.
    MATHEMATICAL PROGRAMMING, 2025, 209 (1-2) : 557 - 608
  • [6] Non-Convex Distributed Optimization
    Tatarenko, Tatiana
    Touri, Behrouz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3744 - 3757
  • [7] Non-Convex Optimization: A Review
    Trehan, Dhruv
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 418 - 423
  • [8] DUALITY IN NON-CONVEX OPTIMIZATION
    TOLAND, JF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) : 399 - 415
  • [9] An Improved Convergence Analysis for Decentralized Online Stochastic Non-Convex Optimization
    Xin, Ran
    Khan, Usman A.
    Kar, Soummya
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 1842 - 1858
  • [10] Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
    Zhuang, Zhenxun
    Cutkosky, Ashok
    Orabona, Francesco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97