Novel structure of the anti-CRISPR protein AcrIE3 and its implication on the CRISPR-Cas inhibition

被引:1
|
作者
Kim, Do Yeon [1 ,2 ]
Ha, Hyun Ji [1 ,2 ]
Park, Hyun Ho [1 ,2 ]
机构
[1] Chung Ang Univ, Coll Pharm, Seoul 06974, South Korea
[2] Chung Ang Univ, Grad Sch, Dept Global Innovat Drugs, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
AcrIE3; Adaptive immunity; Anti-CRISPR proteins; CRISPR-Cas system; Crystal structure; PROVIDES ACQUIRED-RESISTANCE; MECHANISMS; DISCOVERY; BACTERIA; REVEALS; COMPLEX; SYSTEM; GENES; TOOL;
D O I
10.1016/j.bbrc.2024.150164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a response to viral infections, bacteria have evolved the CRISPR-Cas system as an adaptive immune mechanism, enabling them to target and eliminate viral genetic material introduced during infection. However, viruses have also evolved mechanisms to counteract this bacterial defense, including anti-CRISPR proteins, which can inactivate the CRISPR-Cas adaptive immune system, thus aiding the viruses in their survival and replication within bacterial hosts. In this study, we establish the high-resolution crystal structure of the Type IE anti-CRISPR protein, AcrIE3. Our structural examination showed that AcrIE3 adopts a helical bundle fold comprising four alpha-helices, with a notably extended loop at the N-terminus. Additionally, surface analysis of AcrIE3 revealed the presence of three acidic regions, which potentially play a crucial role in the inhibitory function of this protein. The structural information we have elucidated for AcrIE3 will provide crucial insights into fully understanding its inhibitory mechanism. Furthermore, this information is anticipated to be important for the application of the AcrIE family in genetic editing, paving the way for advancements in gene editing technologies.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins
    Yuwei Zhu
    Fan Zhang
    Zhiwei Huang
    BMC Biology, 16
  • [22] Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5
    An, So Young
    Ka, Donghyun
    Kim, Iktae
    Kim, Eun-Hee
    Kim, Nak-Kyoon
    Bae, Euiyoung
    Suh, Jeong-Yong
    NUCLEIC ACIDS RESEARCH, 2020, 48 (13) : 7584 - 7594
  • [23] A Type I-F Anti-CRISPR Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation
    Niu, Yiying
    Yang, Lingguang
    Gao, Teng
    Dong, Changpeng
    Zhang, Buyu
    Yin, Peipei
    Hopp, Ann-Katrin
    Li, Dongdong
    Gan, Rui
    Wang, Hongou
    Liu, Xi
    Cao, Xueli
    Xie, Yongchao
    Meng, Xianbin
    Deng, Haiteng
    Zhang, Xiaohui
    Ren, Jie
    Hottiger, Michael O.
    Chen, Zeliang
    Zhang, Yi
    Liu, Xiaoyun
    Feng, Yue
    MOLECULAR CELL, 2020, 80 (03) : 512 - +
  • [24] Overview development and applications of CRISPR-Cas systems after a decade of research with a glance at anti-CRISPR proteins
    Lohrasbi, Vahid
    Shirmohammadlou, Neda
    Jahanshahi, Aidin
    Razavi, Shabnam
    REVIEWS IN MEDICAL MICROBIOLOGY, 2019, 30 (01) : 47 - 55
  • [25] CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system
    Hong, Suji
    Ka, Donghyun
    Yoon, Seo Jeong
    Suh, Nayoung
    Jeong, Migyeong
    Suh, Jeong-Yong
    Bae, Euiyoung
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (08) : 2744 - 2754
  • [26] Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1
    Zhu, Yalan
    Yin, Sen
    Li, Zhao
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2023, 654 : 34 - 39
  • [27] Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein
    Pawluk, April
    Shah, Megha
    Mejdani, Marios
    Calmettes, Charles
    Moraes, Trevor F.
    Davidson, Alan R.
    Maxwell, Karen L.
    MBIO, 2017, 8 (06):
  • [28] Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins
    Zhu, Yalan
    Gao, Ang
    Zhan, Qi
    Wang, Yong
    Feng, Han
    Liu, Songqing
    Gao, Guangxia
    Serganov, Alexander
    Gao, Pu
    MOLECULAR CELL, 2019, 74 (02) : 296 - +
  • [29] Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
    Dong, De
    Guo, Minghui
    Wang, Sihan
    Zhu, Yuwei
    Wang, Shuo
    Xiong, Zhi
    Yang, Jianzheng
    Xu, Zengliang
    Huang, Zhiwei
    NATURE, 2017, 546 (7658) : 436 - +
  • [30] The solution structure of an anti-CRISPR protein
    Maxwell, Karen L.
    Garcia, Bianca
    Bondy-Denomy, Joseph
    Bona, Diane
    Hidalgo-Reyes, Yurima
    Davidson, Alan R.
    NATURE COMMUNICATIONS, 2016, 7