NEGATIVE EIGENVALUES OF THE CONFORMAL LAPLACIAN

被引:0
|
作者
Henry, Guillermo [1 ,2 ,3 ]
Petean, Jimmy [4 ]
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN, Buenos Aires, Argentina
[2] CONICET UBA, IMAS, Ciudad Univ Pab 1,C1428EHA, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[4] CIMAT, AP 402, Guanajuato 36000, Gto, Mexico
关键词
SIMPLY CONNECTED MANIFOLDS; SCALAR CURVATURE; YAMABE;
D O I
10.1090/proc/16798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed differentiable manifold of dimension at least 3. Let Lambda 0(M) 0 ( M ) be the minimum number of non -positive eigenvalues that the conformal Laplacian of a metric on M can have. We prove that for any k greater than or equal to Lambda 0(M), 0 ( M ), there exists a Riemannian metric on M such that its conformal Laplacian has exactly k negative eigenvalues. Also, we discuss upper bounds for Lambda 0(M). 0 ( M ).
引用
收藏
页码:3085 / 3096
页数:12
相关论文
共 50 条
  • [21] Eigenvalues and lambda constants on Riemannian submersions
    Ma, Li
    Zhu, Anqiang
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 73 - 82
  • [22] Eigenvalues and lambda constants on Riemannian submersions
    Li Ma
    Anqiang Zhu
    Geometriae Dedicata, 2007, 129 : 73 - 82
  • [23] On conformal solutions of the Yamabe flow
    Barbosa, Ezequiel
    Ribeiro, Ernani, Jr.
    ARCHIV DER MATHEMATIK, 2013, 101 (01) : 79 - 89
  • [24] Conformal Deformation on Manifolds With Boundary
    Szu-yu Sophie Chen
    Geometric and Functional Analysis, 2009, 19 : 1029 - 1064
  • [25] On conformal solutions of the Yamabe flow
    Ezequiel Barbosa
    Ernani Ribeiro
    Archiv der Mathematik, 2013, 101 : 79 - 89
  • [26] Revisiting gradient conformal solitons
    Cunha, Antonio W.
    de Lima, Eudes L.
    de Lima, Henrique F.
    Maeta, Shun
    ADVANCES IN GEOMETRY, 2024, 24 (03) : 323 - 328
  • [27] INVARIANT CONFORMAL METRICS ON Sn
    Espinar, Jose M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (11) : 5649 - 5661
  • [28] CONFORMAL DEFORMATION ON MANIFOLDS WITH BOUNDARY
    Chen, Szu-yu Sophie
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) : 1029 - 1064
  • [29] Lower bounds for eigenvalues of the Dirac-Witten operator
    YongFa Chen
    Science in China Series A: Mathematics, 2009, 52 : 2459 - 2468
  • [30] Minimization of scalar curvature in conformal geometry
    Sakellaris, Zisis N.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (01) : 73 - 89