Numerical calculation of the extension of k-beta function and some new extensions by using two parameter k-Mittag-Leffler function

被引:0
|
作者
Laxmi, Parik [1 ]
Jain, Shilpi [1 ]
Agarwal, Praveen [2 ,3 ]
Milovanovic, Gradimir, V [4 ,5 ]
机构
[1] Poornima Univ, Dept Math, Jaipur, India
[2] Anand Int Coll Engn, Dept Math, Jaipur 303012, India
[3] Ajman Univ, Nonlinear Dynam Res Ctr, Ajman, U Arab Emirates
[4] Serbian Acad Arts & Sci, Kneza Mihaila 35, Belgrade 11000, Serbia
[5] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
关键词
k-gamma function; k-beta function; Modified moments; Gaussian quadrature rule; Orthogonal polynomial; Mellin transform; GAMMA;
D O I
10.1016/j.amc.2024.128857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for efficient calculation of recently defined extension of k -beta functions, based on weighted quadrature formulas of Gaussian type, is proposed. The modified moments of an even exponential weight function on (-1, 1), with essential singularities at +/- 1, are calculated in symbolic form in terms of the Meijer G -function. A similar problem with respect the two -parameter Mittag-Leffler function Es1,s2(z) is also considered. The MATHEMATICA package OrthogonalPolynomials by Cvetkovic<acute accent> and Milovanovic<acute accent> (2004) [4] is applied. Also, a new extension of k -gamma and k -beta functions by using two parameter k-Mittag-Leffler function is presented, as well as their basic properties, including some identities, a functional relation, summation and derivative formulas, integral representations and Mellin transform.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] SOME INTEGRAL TRANSFORMS OF THE GENERALIZED k-MITTAG-LEFFLER FUNCTION
    Qi, Feng
    Nisar, Kottakkaran Sooppy
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 125 - 133
  • [2] ON A RECURRENCE RELATION OF K-MITTAG-LEFFLER FUNCTION
    Dhakar, Virendra Singh
    Sharma, Kishan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (04): : 851 - 856
  • [3] The (k, s)-fractional calculus of k-Mittag-Leffler function
    Nisar, K. S.
    Rahman, G.
    Baleanu, D.
    Mubeen, S.
    Arshad, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [4] FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION
    Daiya, Jitendra
    Ram, Jeta
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (1-2): : 89 - 96
  • [5] GENERALIZED k-MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES
    Nathwani, Bharti V.
    Savalia, Rajesh V.
    Rodrigues, Cynthia V.
    Gharat, Harshal s.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (05) : 1427 - 1446
  • [6] Fractional calculus operator with generalize k-Mittag-Leffler function
    Singh, Yudhveer
    Dubey, Ravi Shanker
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (02) : 545 - 553
  • [7] Euler Type Integral Operator Involving k-Mittag-Leffler Function
    Khan, Waseem Ahmad
    Nisar, Kottakkaran Sooppy
    Ahmad, Moin
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (05): : 165 - 174
  • [8] Generalized k-Mittag-Leffler function and its composition with pathway integral operators
    Nisar, K. S.
    Purohit, S. D.
    Abouzaid, M. S.
    Al Qurashi, M.
    Baleanu, D.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3519 - 3526
  • [9] On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function
    P. Agarwal
    M. Chand
    D. Baleanu
    D. O’Regan
    Shilpi Jain
    Advances in Difference Equations, 2018
  • [10] On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function
    Agarwal, P.
    Chand, M.
    Baleanu, D.
    O'Regan, D.
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,