Study on Dynamic Characteristics of Long-Span Highway-Rail Double-Tower Cable-Stayed Bridge

被引:3
|
作者
Guo, Shijie [1 ]
Jiang, Yuhang [2 ]
Zhang, Wenli [2 ]
Zeng, Yong [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Civil Engn, Chengdu 610031, Peoples R China
[2] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic characteristics; long-span; dual-purpose highway-rail; double-tower; cable-stayed bridge;
D O I
10.3390/buildings14061733
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The long-span dual-purpose highway-rail double-tower cable-stayed bridge has the characteristics of a large span and large load-bearing capacity. Compared with the traditional cable-stayed bridge, its wind resistance and seismic resistance are weaker, and the dynamic characteristics of the bridge are closely related to the wind resistance and seismic bearing capacity of the bridge. This study investigated the influence of the variations of bridge member parameters on the dynamic characteristics of the bridge and then improved the dynamic characteristics of the bridge. To provide the necessary experimental theory for the research work of the long-span dual-purpose highway-rail double-tower cable-stayed bridges, this paper takes the world's longest span of the dual-purpose highway-rail double-tower cable-stayed bridge as the background, using the finite element analysis software Midas Civil 2022 v1.2 to establish a three-dimensional model of the whole bridge by changing the steel truss beam stiffness, cable stiffness, pylon stiffness, and auxiliary pier position, as well as study the influence of parameter changes on the dynamic characteristics of the bridge. The results show that the dynamic characteristics of the bridge can be enhanced by increasing the stiffness of the steel truss beam, the cable, and the tower. The stiffness of the steel truss beam mainly affects the transverse bending stiffness and flexural coupling stiffness of the bridge. The influence of cable stiffness is weak. The tower stiffness can comprehensively affect the flexural stiffness and torsional stiffness of the bridge. The position of auxiliary piers should be determined comprehensively according to the site conditions. In practical engineering, the stiffness of components can be enhanced according to the weak links of bridges to improve the dynamic characteristics of bridges and save costs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamic Characteristics of a Long-span Cable-stayed Bridge
    Hui, Liu
    MATERIALS ENGINEERING FOR ADVANCED TECHNOLOGIES, PTS 1 AND 2, 2011, 480-481 : 1496 - 1501
  • [2] Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables
    Xie, Xu
    Li, Xiaozhang
    Shen, Yonggang
    MATERIALS, 2014, 7 (06) : 4854 - 4877
  • [3] The Design and Study on Long-Span Road-Rail Cable-Stayed Bridge
    Zhang, Xianqing
    Guo, Shulun
    Lei, Junqing
    6TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND CIVIL ENGINEERING, 2020, 455
  • [4] The Seismic Response Analysis of Long-Span Cable-Stayed Bridge
    Niu, Yongzhe
    Guo, Wenjie
    Li, Guangling
    Sun, Ruixin
    ADVANCES IN CIVIL AND STRUCTURAL ENGINEERING III, PTS 1-4, 2014, 501-504 : 1364 - +
  • [5] Aerodynamic characteristics of a long-span cable-stayed bridge under construction
    Ma, Cunming
    Duan, Qingsong
    Li, Qiusheng
    Liao, Haili
    Tao, Qi
    ENGINEERING STRUCTURES, 2019, 184 : 232 - 246
  • [6] Damage Detection for Long-Span Cable-Stayed Bridge
    赵玲
    李爱群
    缪长青
    汪永兰
    Journal of Southwest Jiaotong University, 2006, (01) : 63 - 72
  • [7] Fatigue life assessment of FRP cable for long-span cable-stayed bridge
    Feng, Bo
    Wang, Xin
    Wu, Zhishen
    COMPOSITE STRUCTURES, 2019, 210 : 159 - 166
  • [8] Instrumentation for durability monitoring of a long-span cable-stayed bridge
    Hua, XG
    Ni, YQ
    Zhou, HF
    Ko, JM
    Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace, Pts 1 and 2, 2005, 5765 : 982 - 991
  • [9] Seismic vulnerability analysis for long-span cable-stayed bridge
    Huang, Sheng-Nan
    Yang, De-Sheng
    Song, Bo
    Lu, Xin-Zheng
    Gongcheng Lixue/Engineering Mechanics, 2014, 31 (SUPPL.): : 86 - 90+98
  • [10] Puqian Bridge: A Long-Span Cable-Stayed Bridge in a Meizoseismal Area
    Wu, Jingwu
    Xia, Ye
    Sun, Pingkuan
    Yu, Deen
    Sun, Limin
    STRUCTURAL ENGINEERING INTERNATIONAL, 2023, 33 (01) : 64 - 67