Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping

被引:6
|
作者
Moharrami, Meysam [1 ]
Attarchi, Sara [1 ]
Gloaguen, Richard [2 ]
Alavipanah, Seyed Kazem [1 ]
机构
[1] Univ Tehran, Fac Geog, Dept Remote Sensing & GIS, Tehran 1417853933, Iran
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Inst Freiberg Resource Technol H, D-09599 Freiberg, Germany
关键词
change detection; classification; land cover; sample migration; Sentinel; GOOGLE EARTH ENGINE; RANDOM FOREST; CLASSIFICATION; METAANALYSIS; ACCURACY; MACHINE; IMAGERY; CROP;
D O I
10.3390/rs16091566
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable and up-to-date training reference samples are imperative for land cover (LC) classification. However, such training datasets are not always available in practice. The sample migration method has shown remarkable success in addressing this challenge in recent years. This work investigated the application of Sentinel-1 (S1) and Sentinel-2 (S2) data in training sample migration. In addition, the impact of various spectral bands and polarizations on the accuracy of the migrated training samples was also assessed. Subsequently, combined S1 and S2 images were classified using the Support Vector Machines (SVM) and Random Forest (RF) classifiers to produce annual LC maps from 2017 to 2021. The results showed a higher accuracy (98.25%) in training sample migrations using both images in comparison to using S1 (87.68%) and S2 (96.82%) data independently. Among the LC classes, the highest accuracy in migrated training samples was found for water, built-up, bare land, grassland, cropland, and wetland. Inquiries on the efficiency of different spectral bands and polarization used in training sample migration showed that bands 4 and 8 and VV polarization in the water class were more important, while for the wetland class, bands 5, 6, 7, 8, and 8A together with VV polarization showed superior performance. The results showed that the RF classifier provided better performance than the SVM (higher overall, producer, and user accuracy). Overall, our findings suggested that shared use of S1 and S2 data can be used as a suitable means for producing up-to-date and high-quality training samples.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] MULTI-TEMPORAL DATA AUGMENTATION FOR HIGH FREQUENCY SATELLITE IMAGERY: A CASE STUDY IN SENTINEL-1 AND SENTINEL-2 BUILDING AND ROAD SEGMENTATION
    Ayala, C.
    Aranda, C.
    Galar, M.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 25 - 32
  • [32] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [33] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    REMOTE SENSING, 2020, 12 (17)
  • [34] RAPID LANDSLIDE MAPPING USING MULTI-TEMPORAL IMAGE COMPOSITES FROM SENTINEL-1 AND SENTINEL-2 IMAGERY THROUGH GOOGLE EARTH ENGINE
    Prodromou, Maria
    Theocharidis, Christos
    Fotiou, Kyriaki
    Argyriou, Athanasios V.
    Polydorou, Thomaida
    Alatza, Stavroula
    Pittaki, Zampela
    Hadjimitsis, Diofantos
    Tzouvaras, Marios
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2596 - 2599
  • [35] Improving Urban Land Cover Classification with Combined Use of Sentinel-2 and Sentinel-1 Imagery
    Hu, Bin
    Xu, Yongyang
    Huang, Xiao
    Cheng, Qimin
    Ding, Qing
    Bai, Linze
    Li, Yan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (08)
  • [36] Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data
    Bjerreskov, Kristian Skau
    Nord-Larsen, Thomas
    Fensholt, Rasmus
    REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [37] Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon
    Shafizadeh-Moghadam, Hossein
    Minaei, Foad
    Talebi-khiyavi, Hossein
    Xu, Tingting
    Homaee, Mehdi
    CATENA, 2022, 212
  • [38] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [39] Optimization of land cover mapping through improvements in Sentinel-1 and Sentinel-2 image dimensionality and data mining feature selection for hydrological modeling
    Fragoso-Campon, Laura
    Quiros, Elia
    Gutierrez Gallego, Jose Antonio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (12) : 2493 - 2519
  • [40] Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region
    De Luca, Giandomenico
    Silva, Joao M. N.
    Di Fazio, Salvatore
    Modica, Giuseppe
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 52 - 70