Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping

被引:6
|
作者
Moharrami, Meysam [1 ]
Attarchi, Sara [1 ]
Gloaguen, Richard [2 ]
Alavipanah, Seyed Kazem [1 ]
机构
[1] Univ Tehran, Fac Geog, Dept Remote Sensing & GIS, Tehran 1417853933, Iran
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Inst Freiberg Resource Technol H, D-09599 Freiberg, Germany
关键词
change detection; classification; land cover; sample migration; Sentinel; GOOGLE EARTH ENGINE; RANDOM FOREST; CLASSIFICATION; METAANALYSIS; ACCURACY; MACHINE; IMAGERY; CROP;
D O I
10.3390/rs16091566
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable and up-to-date training reference samples are imperative for land cover (LC) classification. However, such training datasets are not always available in practice. The sample migration method has shown remarkable success in addressing this challenge in recent years. This work investigated the application of Sentinel-1 (S1) and Sentinel-2 (S2) data in training sample migration. In addition, the impact of various spectral bands and polarizations on the accuracy of the migrated training samples was also assessed. Subsequently, combined S1 and S2 images were classified using the Support Vector Machines (SVM) and Random Forest (RF) classifiers to produce annual LC maps from 2017 to 2021. The results showed a higher accuracy (98.25%) in training sample migrations using both images in comparison to using S1 (87.68%) and S2 (96.82%) data independently. Among the LC classes, the highest accuracy in migrated training samples was found for water, built-up, bare land, grassland, cropland, and wetland. Inquiries on the efficiency of different spectral bands and polarization used in training sample migration showed that bands 4 and 8 and VV polarization in the water class were more important, while for the wetland class, bands 5, 6, 7, 8, and 8A together with VV polarization showed superior performance. The results showed that the RF classifier provided better performance than the SVM (higher overall, producer, and user accuracy). Overall, our findings suggested that shared use of S1 and S2 data can be used as a suitable means for producing up-to-date and high-quality training samples.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest Mapping
    Pulella, Andrea
    Santos, Rodrigo Aragao
    Sica, Francescopaolo
    Posovszky, Philipp
    Rizzoli, Paola
    REMOTE SENSING, 2020, 12 (05)
  • [22] Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models
    Alonso, Laura
    Picos, Juan
    Armesto, Julia
    REMOTE SENSING, 2021, 13 (12)
  • [23] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    REMOTE SENSING, 2022, 14 (11)
  • [24] Assessment of ensemble learning for object-based land cover mapping using multi-temporal Sentinel-1/2 images
    Xu, Suchen
    Xiao, Wu
    Ruan, Linlin
    Chen, Wenqi
    Du, Jingnan
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [25] LAND COVER MAPPING USING SENTINEL-1 SAR DATA
    Abdikan, S.
    Sanli, F. B.
    Ustuner, M.
    Calo, F.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 757 - 761
  • [26] Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery
    Bhattarai, Rajeev
    Rahimzadeh-Bajgiran, Parinaz
    Weiskittel, Aaron
    Meneghini, Aaron
    MacLean, David A.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 28 - 40
  • [27] Sentinel-2 Data for Land Cover/Use Mapping: A Review
    Phiri, Darius
    Simwanda, Matamyo
    Salekin, Serajis
    Nyirenda, Vincent R.
    Murayama, Yuji
    Ranagalage, Manjula
    REMOTE SENSING, 2020, 12 (14)
  • [28] Mapping smallholder maize farm distribution using multi-temporal Sentinel-1 data integrated with Sentinel-2, DEM and CHIRPS precipitation data in Google Earth Engine
    de Villiers, Colette
    Munghemezulu, Cilence
    Tesfamichael, Solomon G.
    Mashaba-Munghemezulu, Zinhle
    Chirima, George J.
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2024, 13 (02): : 321 - 351
  • [29] An Application of Sentinel-1, Sentinel-2, and GNSS Data for Landslide Susceptibility Mapping
    Ghorbanzadeh, Omid
    Didehban, Khalil
    Rasouli, Hamid
    Kamran, Khalil Valizadeh
    Feizizadeh, Bakhtiar
    Blaschke, Thomas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (10)
  • [30] Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data
    Tomppo, Erkki
    Antropov, Oleg
    Praks, Jaan
    REMOTE SENSING, 2019, 11 (04)