Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping

被引:6
|
作者
Moharrami, Meysam [1 ]
Attarchi, Sara [1 ]
Gloaguen, Richard [2 ]
Alavipanah, Seyed Kazem [1 ]
机构
[1] Univ Tehran, Fac Geog, Dept Remote Sensing & GIS, Tehran 1417853933, Iran
[2] Helmholtz Zentrum Dresden Rossendorf HZDR, Helmholtz Inst Freiberg Resource Technol H, D-09599 Freiberg, Germany
基金
英国科研创新办公室;
关键词
change detection; classification; land cover; sample migration; Sentinel; GOOGLE EARTH ENGINE; RANDOM FOREST; CLASSIFICATION; METAANALYSIS; ACCURACY; MACHINE; IMAGERY; CROP;
D O I
10.3390/rs16091566
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable and up-to-date training reference samples are imperative for land cover (LC) classification. However, such training datasets are not always available in practice. The sample migration method has shown remarkable success in addressing this challenge in recent years. This work investigated the application of Sentinel-1 (S1) and Sentinel-2 (S2) data in training sample migration. In addition, the impact of various spectral bands and polarizations on the accuracy of the migrated training samples was also assessed. Subsequently, combined S1 and S2 images were classified using the Support Vector Machines (SVM) and Random Forest (RF) classifiers to produce annual LC maps from 2017 to 2021. The results showed a higher accuracy (98.25%) in training sample migrations using both images in comparison to using S1 (87.68%) and S2 (96.82%) data independently. Among the LC classes, the highest accuracy in migrated training samples was found for water, built-up, bare land, grassland, cropland, and wetland. Inquiries on the efficiency of different spectral bands and polarization used in training sample migration showed that bands 4 and 8 and VV polarization in the water class were more important, while for the wetland class, bands 5, 6, 7, 8, and 8A together with VV polarization showed superior performance. The results showed that the RF classifier provided better performance than the SVM (higher overall, producer, and user accuracy). Overall, our findings suggested that shared use of S1 and S2 data can be used as a suitable means for producing up-to-date and high-quality training samples.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees
    Akcay, Haydar
    Aksoy, Samet
    Kaya, Sinasi
    Sertel, Elif
    Dash, Jadu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (23) : 7338 - 7364
  • [2] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [3] Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
    Steinhausen, Max J.
    Wagner, Paul D.
    Narasimhan, Balaji
    Waske, Bjoern
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 595 - 604
  • [4] Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
    Cuypers, Suzanna
    Nascetti, Andrea
    Vergauwen, Maarten
    REMOTE SENSING, 2023, 15 (10)
  • [5] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [6] The Influence of Data Density and Integration on Forest Canopy Cover Mapping Using Sentinel-1 and Sentinel-2 Time Series in Mediterranean Oak Forests
    Nasiri, Vahid
    Sadeghi, Seyed Mohammad Moein
    Moradi, Fardin
    Afshari, Samaneh
    Deljouei, Azade
    Griess, Verena C.
    Maftei, Carmen
    Borz, Stelian Alexandru
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)
  • [7] SINCOHMAP: LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE
    Vicente-Guijalba, F.
    Jacob, A.
    Lopez-Sanchez, J. M.
    Lopez-Martinez, C.
    Duro, J.
    Notarnicola, C.
    Ziolkowski, D.
    Mestre-Quereda, A.
    Pottier, E.
    Mallorqui, J. J.
    Lavalle, M.
    Engdahl, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6631 - 6634
  • [8] FARM: A fully automated rice mapping framework combining Sentinel-1 SAR and Sentinel-2 multi-temporal imagery
    Gao, Yuan
    Pan, Yaozhong
    Zhu, Xiufang
    Li, Le
    Ren, Shoujia
    Zhao, Chuanwu
    Zheng, Xuechang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [9] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [10] Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification
    De Fioravante, Paolo
    Luti, Tania
    Cavalli, Alice
    Giuliani, Chiara
    Dichicco, Pasquale
    Marchetti, Marco
    Chirici, Gherardo
    Congedo, Luca
    Munafo, Michele
    LAND, 2021, 10 (06)