Synergistic effect of combining UiO-66 nanoparticles and MXene nanosheets in Pebax mixed-matrix membranes for CO 2 capture

被引:8
|
作者
Ajebe, Eyasu Gebrie [1 ]
Hu, Chien-Chieh [1 ,3 ]
Wang, Chih-Feng [2 ]
Hung, Wei-Song [1 ,3 ]
Tsai, Hsieh-Chih [1 ]
Hundessa, Netsanet Kebede [1 ]
Lee, Kueir-Rarn [3 ]
Lai, Juin-Yih [1 ,3 ,4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Adv Membrane Mat Res Ctr, Taipei 10607, Taiwan
[2] Natl Sun Yat Sen Univ, Inst Adv Semicond Packaging & Testing, Kaohsiung 804, Taiwan
[3] Chung Yuan Christian Univ, R&D Ctr Membrane Technol, Chungli 32023, Taiwan
[4] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Chungli 32003, Taoyuan, Taiwan
关键词
MXene nanosheets; UiO-66; nanoparticles; Pebax-1657; MMMs; CO; 2; separation; COVALENT ORGANIC FRAMEWORKS; CARBON-DIOXIDE SEPARATION; GRAPHENE OXIDE; GAS-SEPARATION; PERFORMANCE; FABRICATION; PLASTICIZATION; POLYSULFONE; COMBINATION; POLYMER;
D O I
10.1016/j.mtsust.2024.100818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of membrane -based gas separation has garnered significant interest owing to its cost-effectiveness, outstanding performance and positive environmental impact. The performance of gas separation membranes can be considerably enhanced by mixed -matrix membranes (MMMs), but poor interactions between additives and membrane matrix and the agglomeration of highly incorporated fillers in MMMs limit the benefits overcoming tradeoff effect. Therefore, the regulation of the state of fillers in membrane matrix is a crucial indicator in the development of MMMs. In this study, MXene (Ti 3 C 2 T x ) nanosheets and UiO-66 nanoparticles were prepared and used as fillers, in combination with a Pepax-1657 matrix, to synthesize MMMs for CO 2 -gas separation. As -prepared MMMs were used for the separation; the large pores (0.5 - 0.6 nm) of UiO-66 served as highway to enhance CO 2 permeability, and MXene nanosheets were used as selective channels to achieve high selectivity via the terminal polar surface groups of MXene. The combination of UiO-66 and MXene not only enhanced the selectivity, but also increased the solubility and diffusivity via selective CO 2 adsorption and the tortuous pathway provided by MXene nanosheets. As a result, adding MXene and UiO-66 to Pebax helped MMMs overcome the tradeoff effect. MMMs loaded with 10 wt% MXene/UiO-66 exhibited a CO 2 permeability coefficient of 214.6 Barrer and an ideal CO 2 /N 2 selectivity coefficient of 102. Dual filler -containing MMMs showed enhanced CO 2 permeability coefficient and CO 2 /N 2 selectivity in comparison to pristine Pebax and individual nanofiller-added membranes. In this study, the combination of 2D MXene and UiO-66 nanoparticles exerted synergistic effect in improving the CO 2 separation efficiency of MMMs. This research provides a novel route for fabricating high-performance MMMs in the separation of CO 2 .
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture
    Dai, Yan
    Ruan, Xuehua
    Yan, Zhijun
    Yang, Kai
    Yu, Miao
    Li, Hao
    Zhao, Wei
    He, Gaohong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 166 : 171 - 180
  • [32] Development of Mixed Matrix Membranes by Using NH2-Functionalized UiO-66 and [APTMS][AC] Ionic Liquid for the Separation of CO2
    Khalid, Hafiza Mamoona
    Mujahid, Afshan
    Ali, Asif
    Khan, Asim Laeeq
    Saleem, Mahmood
    Santos, Rafael M.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [33] On the Better Understanding of the Surprisingly High Performance of Metal-Organic Framework-Based Mixed-Matrix Membranes Using the Example of UiO-66 and Matrimid
    Friebe, Sebastian
    Mundstock, Alexander
    Volgmann, Kai
    Caro, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) : 41553 - 41558
  • [34] Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO2 Separation
    Martinez-Izquierdo, Lidia
    Garcia-Comas, Cristina
    Dai, Shan
    Navarro, Marta
    Tissot, Antoine
    Serre, Christian
    Tellez, Carlos
    Coronas, Joaquin
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 4024 - 4034
  • [35] CO2 capture using amine incorporated UiO-66 in atmospheric pressure
    Suresh Mutyala
    Ya-Dong Yu
    Wei-Guang Jin
    Zhi-Shuo Wang
    Deng-Yue Zheng
    Chun-Rong Ye
    Binbin Luo
    Journal of Porous Materials, 2019, 26 : 1831 - 1838
  • [36] CO2 capture using amine incorporated UiO-66 in atmospheric pressure
    Mutyala, Suresh
    Yu, Ya-Dong
    Jin, Wei-Guang
    Wang, Zhi-Shuo
    Zheng, Deng-Yue
    Ye, Chun-Rong
    Luo, Binbin
    JOURNAL OF POROUS MATERIALS, 2019, 26 (06) : 1831 - 1838
  • [37] Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal-Organic Framework Nanosheets for Efficient CO2 Capture
    Cheng, Youdong
    Tavares, Gio R.
    Doherty, Cara M.
    Ying, Yunpan
    Sarnello, Erik
    Maurin, Guillaume
    Hill, Matthew R.
    Li, Tao
    Zhao, Dan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 43095 - 43103
  • [38] Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation
    Wang, Yonghong
    Ma, Zhiwei
    Zhang, Xinru
    Li, Jinping
    Zhou, Yi
    Jin, Zhuo
    Li, Nanwen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 644
  • [39] Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1
    Khdhayyer, Muhanned R.
    Esposito, Elisa
    Fuoco, Alessio
    Monteleone, Marcello
    Giorno, Lidietta
    Jansen, Johannes C.
    Attfield, Martin P.
    Budd, Peter M.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 : 304 - 313
  • [40] Amidoxime Modified UiO-66@PIM-1 Mixed-Matrix Membranes to Enhance CO2 Separation and Anti-Aging Performance
    Gao, Jiaming
    Sun, Yongchao
    Kang, Feifei
    Guo, Fei
    He, Gaohong
    Wang, Hanli
    Yang, Zhendong
    Ma, Canghai
    Jiang, Xiaobin
    Xiao, Wu
    MEMBRANES, 2023, 13 (09)