Heights and transcendence of p-adic continued fractions

被引:0
作者
Longhi, Ignazio [1 ]
Murru, Nadir [2 ]
Saettone, Francesco M. [3 ]
机构
[1] Univ Torino, Dept Math, Turin, Italy
[2] Univ Trento, Dept Math, Trento, Italy
[3] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
Subspace theorem; Roth theorem and p-adic continued fractions; Transcendence;
D O I
10.1007/s10231-024-01476-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous p-adic problem. More specifically, we deal with Browkin p-adic continued fractions. First we give some new remarks about the Browkin algorithm in terms of a p-adic Euclidean algorithm. Then, we focus on the heights of some p-adic numbers having a periodic p-adic continued fraction expansion and we obtain some upper bounds. Finally, we exploit these results, together with p-adic Roth-like results, in order to prove the transcendence of three families of p-adic continued fractions.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 27 条
  • [1] Palindromic continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) : 1557 - 1574
  • [2] On the Maillet-Baker continued fractions
    Adamczewski, Boris
    Bugeaud, Yann
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 : 105 - 121
  • [3] Continued fractions and transcendental numbers
    Adamczewski, Boris
    Bugeaud, Yann
    Davison, Les
    [J]. ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) : 2093 - 2113
  • [4] Transcendence of Sturmian or morphic continued fractions
    Allouche, JP
    Davison, JL
    Queffélec, M
    Zamboni, LQ
    [J]. JOURNAL OF NUMBER THEORY, 2001, 91 (01) : 39 - 66
  • [5] Baker A., 1962, Mathematika, V9, P1
  • [6] A NOTE ON P-ADIC CONTINUED FRACTIONS
    BEDOCCHI, E
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 : 197 - 207
  • [7] Transcendence of Thue-Morse p-Adic Continued Fractions
    Belhadef, Rafik
    Esbelin, Henri-Alex
    Zerzaihi, Tahar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1429 - 1434
  • [8] Bombieri E., 2006, New Mathematical Monographs, V4
  • [9] Browkin J, 2001, MATH COMPUT, V70, P1281, DOI 10.1090/S0025-5718-00-01296-5
  • [10] Browkin J., 1978, Demonstr. Math, V11, P67, DOI [10.1515/dema-1978-0108, DOI 10.1515/DEMA-1978-0108]