Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review (vol 14, 1363812, 2024)

被引:0
作者
Bao, Zhixian [1 ,2 ]
Du, Jie [3 ]
Zheng, Ya [1 ,4 ]
Guo, Qinghong [1 ,4 ]
Ji, Rui [1 ,4 ]
机构
[1] Lanzhou Univ, Hosp 1, Dept Gastroenterol, Lanzhou, Peoples R China
[2] Xian 1 Hosp, Dept Gastroenterol, Xian, Shaanxi, Peoples R China
[3] Lanzhou Univ, Sch Publ Hlth, Dept Social Med & Hlth Management, Lanzhou, Peoples R China
[4] Lanzhou Univ, Hosp 1, Gansu Prov Clin Res Ctr Digest Dis, Lanzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
gastric cancer; neoadjuvant chemotherapy; deep learning; radiomics; artificial intelligence; meta-analysis;
D O I
10.3389/fonc.2024.1433346
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Role of Neoadjuvant Chemotherapy in Breast Cancer Patients: Systematic Review and Meta-analysis
    Pathak, Mona
    Deo, S. V. S.
    Dwivedi, Sada Nand
    Sreenivas, Vishnubhatla
    Thakur, Bhaskar
    Julka, Pramod Kumar
    Rath, G. K.
    [J]. INDIAN JOURNAL OF MEDICAL AND PAEDIATRIC ONCOLOGY, 2019, 40 (01) : 48 - 62
  • [32] Survival and complications after neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy for locally advanced gastric cancer: a systematic review and meta-analysis
    Zhu, Youqi
    Chen, Jiuzhou
    Sun, Xueqing
    Lou, Yufei
    Fang, Miao
    Zhou, Fengjuan
    Zhang, Lei
    Xin, Yong
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [33] Optimal timing of surgery for gastric cancer after neoadjuvant chemotherapy: a systematic review and meta-analysis
    Ling Q.
    Huang S.-T.
    Yu T.-H.
    Liu H.-L.
    Zhao L.-Y.
    Chen X.-L.
    Liu K.
    Chen X.-Z.
    Yang K.
    Hu J.-K.
    Zhang W.-H.
    [J]. World Journal of Surgical Oncology, 21 (1)
  • [34] Prognostic value of neutrophil-to-lymphocyte ratio in gastric cancer patients undergoing neoadjuvant chemotherapy: A systematic review and meta-analysis
    Wei, Zhen-Hua
    Tuo, Min
    Ye, Chen
    Wu, Xiao-Fan
    Wang, Hong-Hao
    Ren, Wen-Zhen
    Liu, Gao
    Xiang, Tian
    [J]. WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 16 (11) : 4477 - 4488
  • [35] Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer
    Wang, Zhan
    Li, Xiaoqin
    Zhang, Heng
    Duan, Tongtong
    Zhang, Chao
    Zhao, Tong
    [J]. ULTRASONIC IMAGING, 2024, 46 (06) : 357 - 366
  • [36] The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review
    Fangfang Tian
    Guohua Shen
    Yunfu Deng
    Wei Diao
    Zhiyun Jia
    [J]. European Radiology, 2017, 27 : 4786 - 4796
  • [37] The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review
    Tian, Fangfang
    Shen, Guohua
    Deng, Yunfu
    Diao, Wei
    Jia, Zhiyun
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (11) : 4786 - 4796
  • [38] Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis
    Wu, Qian
    Guo, Hui
    Li, Ruihan
    Han, Jinhuan
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 196
  • [39] MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis
    Tabnak, Peyman
    HajiEsmailPoor, Zanyar
    Baradaran, Behzad
    Pashazadeh, Fariba
    Maleki, Leili Aghebati
    [J]. ACADEMIC RADIOLOGY, 2024, 31 (03) : 763 - 787
  • [40] Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis
    Tavanaei, Roozbeh
    Akhlaghpasand, Mohammadhosein
    Alikhani, Alireza
    Hajikarimloo, Bardia
    Ansari, Ali
    Yong, Raymund L.
    Margetis, Konstantinos
    [J]. NEUROSURGICAL REVIEW, 2025, 48 (01)