Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review (vol 14, 1363812, 2024)

被引:0
作者
Bao, Zhixian [1 ,2 ]
Du, Jie [3 ]
Zheng, Ya [1 ,4 ]
Guo, Qinghong [1 ,4 ]
Ji, Rui [1 ,4 ]
机构
[1] Lanzhou Univ, Hosp 1, Dept Gastroenterol, Lanzhou, Peoples R China
[2] Xian 1 Hosp, Dept Gastroenterol, Xian, Shaanxi, Peoples R China
[3] Lanzhou Univ, Sch Publ Hlth, Dept Social Med & Hlth Management, Lanzhou, Peoples R China
[4] Lanzhou Univ, Hosp 1, Gansu Prov Clin Res Ctr Digest Dis, Lanzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
gastric cancer; neoadjuvant chemotherapy; deep learning; radiomics; artificial intelligence; meta-analysis;
D O I
10.3389/fonc.2024.1433346
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [21] CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis
    Luo, Xinmin
    Zheng, Renying
    Zhang, Jiao
    He, Juan
    Luo, Wei
    Jiang, Zhi
    Li, Qiang
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [22] Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis
    HajiEsmailpoor, Zanyar
    Tabnak, Peyman
    Baradaran, Behzad
    Pashazadeh, Fariba
    Aghebati-Maleki, Leili
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [23] Predicting hemorrhagic transformation in acute ischemic stroke: a systematic review, meta-analysis, and methodological quality assessment of CT/MRI-based deep learning and radiomics models
    Mohsen Salimi
    Pouria Vadipour
    Amir Reza Bahadori
    Shakiba Houshi
    Ali Mirshamsi
    Hossein Fatemian
    Emergency Radiology, 2025, 32 (3) : 409 - 433
  • [24] MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis
    Liao, Zhongfan
    Luo, Dashuang
    Tang, Xiaoyan
    Huang, Fasheng
    Zhang, Xuhui
    FRONTIERS IN ONCOLOGY, 2025, 15
  • [25] Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients With MRI-Radiomics: A Systematic Review and Meta-analysis
    Pesapane, Filippo
    Agazzi, Giorgio Maria
    Rotili, Anna
    Ferrari, Federica
    Cardillo, Andrea
    Penco, Silvia
    Dominelli, Valeria
    D'Ecclesiis, Oriana
    Vignati, Silvano
    Raimondi, Sara
    Bozzini, Anna
    Pizzamiglio, Maria
    Petralia, Giuseppe
    Nicosia, Luca
    Cassano, Enrico
    CURRENT PROBLEMS IN CANCER, 2022, 46 (05)
  • [26] Computed tomography-based radiomics nomogram for predicting therapeutic response to neoadjuvant chemotherapy in locally advanced gastric cancer
    Chen, Wenjing
    Zhang, Weiteng
    Chen, Xietao
    Dong, Weisong
    Cai, Yiqi
    Cheng, Jun
    Jin, Jinji
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2024, 26 (08) : 1944 - 1955
  • [27] CT-based radiomics analysis in the prediction of response to neoadjuvant chemotherapy in locally advanced gastric cancer: A dual- center study
    Song, Ruirui
    Cui, Yanfen
    Ren, Jialiang
    Zhang, Junjie
    Yang, Zhao
    Li, Dandan
    Li, Zhenhui
    Yang, Xiaotang
    RADIOTHERAPY AND ONCOLOGY, 2022, 171 : 155 - 163
  • [28] Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features
    Tan, Xiaoying
    Yang, Xiao
    Hu, Shudong
    Ge, Yuxi
    Wu, Qiong
    Wang, Jun
    Sun, Zongqiong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (01) : 49 - 61
  • [29] Deep learning in CT image segmentation of cervical cancer: a systematic review and meta-analysis
    Yang, Chongze
    Qin, Lan-hui
    Xie, Yu-en
    Liao, Jin-yuan
    RADIATION ONCOLOGY, 2022, 17 (01)
  • [30] Deep learning in CT image segmentation of cervical cancer: a systematic review and meta-analysis
    Chongze Yang
    Lan-hui Qin
    Yu-en Xie
    Jin-yuan Liao
    Radiation Oncology, 17