Facile and rapid method to synthesis sulfur and nitrogen co-doped graphene quantum dots as an electrode material with excellent specific capacitance for supercapacitors application

被引:4
|
作者
Muhiuddin, Mohammad [1 ]
Devi, Naorem Aruna [1 ]
Bharadishettar, Naveen [1 ]
Meti, Sunil [2 ]
Siddique, Abu Bakar [3 ]
Satyanarayan, M. N. [4 ]
Udaya, Bhat. K. [1 ]
Akhtar, Waseem [5 ]
Rahman, Mohammad Rizwanur [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Met & Mat Engn, Surathkal 575025, India
[2] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, India
[3] Inst Tecnol & Estudios Super Monterrey, Monterrey 64849, Mexico
[4] Natl Inst Technol Karnataka, Dept Phys, Surathkal 575025, India
[5] Jamia Milia Islamia, Dept Phys, New Delhi 110025, India
基金
英国医学研究理事会;
关键词
Graphene quantum dots (GQDs); Microwave-assisted hydrothermal (MAH); PANI; Energy density; Symmetric supercapacitors; SOLID-STATE SUPERCAPACITOR; POLYANILINE; CARBON; OXIDE; COMPOSITES; NANOCOMPOSITES; NANOSHEET; STORAGE;
D O I
10.1016/j.diamond.2024.111232
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current invention pertains to the expeditious simple synthesis of electrode materials that improve the storage capacity of supercapacitors (SCs). Sulfur and nitrogen co-doped graphene quantum dots (SN-GQDs) are synthesized using a microwave-assisted hydrothermal (MAH) process at low pressure and with a short reaction time. The utilization of SN-GQDs in conjunction with Polyaniline (PANI) has the potential to enhance the supercapacitor's energy and power density, owing to their notable specific capacitance. Implementing SN-GQDs material as an SCs electrode, exhibiting an outstanding specific capacitance of 1040 F/g at an applied current density of 0.5 A g-1. Furthermore, a composite of SN-GQDs/PANI is synthesized and the electrochemical performance is compared with the as-synthesized PANI. The symmetrical SCs are fabricated using SN-GQDs/PANI composite, and PANI. At a current density of 0.5 A g-1 SN-GQDs/PANI composite-based SC displays a superior energy density of 44.25 Wh/kg at a power density of 1.227 kW/kg. This is high in comparison to PANI-based SC which shows an energy density of 18.71 Wh/kg at 0.8 kW/kg power density at the same current density. The SC created using SN-GQDs/PANI composite exhibits superior properties and is a promising material for SC applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Facile synthesis of T-Nb2O5 nanosheets/nitrogen and sulfur co-doped graphene for high performance lithium-ion hybrid supercapacitors
    Jiao, Xinyan
    Hao, Qingli
    Liu, Peng
    Xia, Xifeng
    Lei, Wu
    Liu, Xiaoheng
    SCIENCE CHINA-MATERIALS, 2018, 61 (02) : 273 - 284
  • [42] Facile Synthesis of NiO/Nitrogen-doped Reduced Graphene Oxide Nanocomposites for the Application in Supercapacitors
    Hu, Jun
    Yang, Ping
    Nie, Taotao
    Liu, Songlan
    Ni, Huiqiong
    Shi, Jianjun
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (05) : 895 - 901
  • [43] Facile synthesis of nitrogen and sulfur co-doped graphene-like carbon materials using methyl blue/montmorillonite composites
    Chen, Qingze
    Liu, Hongmei
    Zhu, Runliang
    Wang, Xin
    Wang, Shuangyin
    Zhu, Jianxi
    He, Hongping
    MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 225 : 137 - 143
  • [44] Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging
    Ananthanarayanan, Arundithi
    Wang, Yue
    Routh, Parimal
    Sk, Mahasin Alam
    Than, Aung
    Lin, Ming
    Zhang, Jie
    Chen, Jie
    Sun, Handong
    Chen, Peng
    NANOSCALE, 2015, 7 (17) : 8159 - 8165
  • [45] Facile synthesis of the nitrogen-doped graphene quantum dots at low temperature for cellular labeling
    Pang, Yuqian
    Gao, Hui
    Lai, Luhao
    Li, Xiaolong
    MATERIALS RESEARCH BULLETIN, 2018, 104 : 83 - 86
  • [46] Influence of nitrogen and sulfur co-doped activated carbon used as electrode material in EmiFSI ionic liquid toward high-energy supercapacitors
    Kitenge, V. N.
    Tarimo, D. J.
    Rutavi, G.
    Maphiri, V. M.
    Sarr, S.
    Diop, M.
    Chaker, M.
    Manyala, N.
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [47] 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors
    Su, Xiao-Li
    Fu, Lin
    Cheng, Ming-Yu
    Yang, Jing-He
    Guan, Xin-Xin
    Zheng, Xiu-Cheng
    APPLIED SURFACE SCIENCE, 2017, 426 : 924 - 932
  • [48] Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors
    Li, Zhen
    Li, Yanfeng
    Wang, Liang
    Cao, Ling
    Liu, Xiang
    Chen, Zhiwen
    Pan, Dengyu
    Wu, Minghong
    ELECTROCHIMICA ACTA, 2017, 235 : 561 - 569
  • [49] Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
    Zhang, Huanhuan
    Liu, Xiangqian
    He, Guangli
    Zhang, Xiaoxing
    Bao, Shujuan
    Hu, Weihua
    JOURNAL OF POWER SOURCES, 2015, 279 : 252 - 258
  • [50] Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material for supercapacitor applications
    Khandelwal, Mahima
    Van Tran, Chau
    Bin In, Jung
    APPLIED SURFACE SCIENCE, 2022, 576