The Hopf Automorphism Group of Two Classes of Drinfeld Doubles

被引:0
作者
Sun, Hua [1 ]
Hu, Mi [1 ]
Hu, Jiawei [1 ]
机构
[1] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Peoples R China
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 06期
关键词
Hopf algebra; Drinfeld double; automorphism group; RANK-ONE; ALGEBRAS;
D O I
10.3390/sym16060735
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let D(R-m,R-n(q)) be the Drinfeld double of Radford Hopf algebra R-m,R-n(q) and D(H-s,H-t) be the Drinfeld double of generalized Taft algebra H-s,H-t. Both D(R-m,R-n(q)) and D(H-s,H-t) have very symmetric structures. We calculate all Hopf automorphisms of D(R-m,R-n(q)) and D(H-s,H-t), respectively. Furthermore, we prove that the Hopf automorphism group Aut(Hopf)(D(R-m,R-n(q))) is isomorphic to the direct sum Z(n) circle plus Z(m) of cyclic groups Z(m) and Z(n), the Hopf automorphism group Aut(Hopf)(D(H-s,H-t)) is isomorphic to the semi-direct products k* (sic) Z(d) of multiplicative group k* and cyclic group Z(d), where s=td, k*=k\{0}, and k is an algebraically closed field with char (k) inverted iota t.
引用
收藏
页数:15
相关论文
共 20 条
[1]   DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS [J].
ALEV, J ;
CHAMARIE, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) :1787-1802
[2]  
Artamonov V.A., 2005, Ann. Univ. Ferrara, V51, P29, DOI [10.1007/BF02824822, DOI 10.1007/BF02824822]
[3]  
Cao T.Q., 2022, Mathematics, V8, P1547
[4]   The coalgebra automorphism group of Hopf algebra kq[x, x-1, y] [J].
Chen, Hui-Xiang .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (10) :1870-1887
[5]   Stable Green Ring of the Drinfeld Doubles of the Generalised Taft Algebras (Corrections and New Results) [J].
Erdmann, Karin ;
Green, Edward L. ;
Snashall, Nicole ;
Taillefer, Rachel .
ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) :757-783
[6]  
Huang HL, 2004, ALGEBR COLLOQ, V11, P313
[7]  
KASSEL C, 1995, GRADUATE TEXTS MATH, V155
[8]   A Q-ANALOG FOR THE VIRASORO ALGEBRA [J].
KIRKMAN, E ;
PROCESI, C ;
SMALL, L .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :3755-3774
[9]   Finite-dimensional Hopf algebras of rank one in characteristic zero [J].
Krop, Leonid ;
Radford, David E. .
JOURNAL OF ALGEBRA, 2006, 302 (01) :214-230
[10]   Hopf Algebra Symmetries of an Integrable Hamiltonian for Anyonic Pairing [J].
Links, Jon .
AXIOMS, 2012, 1 (02) :226-237