A structure-preserving local discontinuous Galerkin method for the stochastic KdV equation

被引:0
作者
Liu, Xuewei [1 ]
Yang, Zhanwen [2 ]
Ma, Qiang [1 ]
Ding, Xiaohua [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
[2] Harbin Inst Technol Harbin, Dept Math, Harbin 150000, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic KdV equation; LDG method; Structure-preserving; Stability; Optimal error estimate; FINITE-ELEMENT-METHOD; NUMERICAL-SOLUTION; MAXWELL EQUATIONS; ALGORITHMS; WAVES;
D O I
10.1016/j.apnum.2024.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a local discontinuous Galerkin (LDG) method for the stochastic Korteweg-de Vries (KdV) equation with multi -dimensional multiplicative noise. In the mean square sense, we show that the numerical method is L2 stable and it preserves energy conservation and energy dissipation. If the degree of the polynomial is n, the optimal error estimate in the mean square sense can reach as n + 1. Finally, structure-preserving and convergence are verified by numerical experiments.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 41 条
[1]   A discussion on the Lie symmetry analysis, travelling wave solutions and conservation laws of new generalized stochastic potential-KdV equation [J].
Abbas, Naseem ;
Hussain, Akhtar ;
Riaz, Muhammad Bilal ;
Ibrahim, Tarek F. ;
Birkea, F. M. Osman ;
Tahir, R. Abdelrahman .
RESULTS IN PHYSICS, 2024, 56
[2]   Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method [J].
Aksan, EN ;
Özdes, A .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1256-1265
[4]   Multisymplectic box schemes and the Korteweg-de Vries equation [J].
Ascher, UM ;
McLachlan, RI .
APPLIED NUMERICAL MATHEMATICS, 2004, 48 (3-4) :255-269
[5]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[6]  
Brugnano L., 2010, JNAIAM J NUMER ANAL, V5, P17
[7]   Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs [J].
Cai, Jiaxiang ;
Wang, Yushun ;
Jiang, Chaolong .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 :210-220
[8]   Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods [J].
Chen, Chuchu ;
Hong, Jialin ;
Zhang, Liying .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 306 :500-519
[9]   Energy-conserved splitting FDTD methods for Maxwell's equations [J].
Chen, Wenbin ;
Li, Xingjie ;
Liang, Dong .
NUMERISCHE MATHEMATIK, 2008, 108 (03) :445-485
[10]   Multi-symplectic methods for the Ito-type coupled KdV equation [J].
Chen, Yaming ;
Song, Songhe ;
Zhu, Huajun .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5552-5561