THERMODYNAMIC PERFORMANCE INVESTIGATION OF ENVIRONMENTALLY FRIENDLY WORKING FLUIDS IN A GOETHERMAL INTERGATED PUMPED THERMAL ENERGY STORAGE SYSTEM

被引:0
|
作者
Mwesigye, Aggrey [1 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
来源
PROCEEDINGS OF ASME 2023 17TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2023 | 2023年
关键词
Energy storage; Exergetic efficiency; Geothermal energy; Net power ratio; Pumped thermal energy storage; HEAT; PTES;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Among the available energy storage technologies, pumped thermal energy storage (PTES) is emerging as a potential solution for large-scale electrical energy storage with no geographical limitations and high roundtrip efficiencies. However, PTES requires a low-cost high temperature heat source to achieve reasonable roundtrip efficiencies. Moreover, organic Rankine cycle-based PTES systems require high performance and environmentally friendly working fluids. In this study, the thermodynamic performance of a geothermal integrated PTES system using environmentally friendly working fluids is investigated. The mathematical model of the geothermal integrated PTES system is developed using the first and second laws of thermodynamics and implemented in Engineering Equation Solver (EES). With the developed model, the thermodynamic performance of the PTES system for different working fluids, including Butene, cyclopentane, iso-butane, R1233zd(E), R1234ze(Z), R1224yd(Z), HFO1336-mzz(Z), R365mfc, n-hexane, and n-pentane was investigated. For geothermal fluid outlet temperatures between 60 degrees C and 120 degrees C and geothermal fluid inlet and outlet temperature differences across the evaporator between 20 degrees C and 60 degrees C, the net power ratio i.e., the ratio of the electrical energy discharged to the electrical energy used to run the charging cycle is between 0.25 and 1.40. This shows that the system has the potential to give back more than 100% of the electrical energy used during charging under certain conditions. High net power ratios are obtained for a combination of high source temperatures and low geothermal fluid inlet and outlet temperature differences.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Energy, exergy, and economic analyses of a novel liquid air and pumped thermal combined energy storage system
    Li, Junxian
    Wang, Zhikang
    Li, Yihong
    Wei, Guqiang
    Ji, Wei
    Fan, Xiaoyu
    Gao, Zhaozhao
    Chen, Liubiao
    Wang, Junjie
    ENERGY CONVERSION AND MANAGEMENT, 2025, 330
  • [22] Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)
    Wang, Liang
    Lin, Xipeng
    Zhang, Han
    Peng, Long
    Ling, Haoshu
    Zhang, Shuang
    Chen, Haisheng
    APPLIED ENERGY, 2023, 332
  • [23] Advancing pumped thermal energy storage performance and cost using silica storage media
    Mctigue, Joshua
    Hirschey, Jason
    Ma, Zhiwen
    APPLIED ENERGY, 2025, 387
  • [24] Configuration mapping of thermally integrated pumped thermal energy storage system
    Zhang, Meiyan
    Shi, Lingfeng
    Zhang, Yonghao
    He, Jintao
    Sun, Xiaocun
    Hu, Peng
    Pei, Gang
    Tian, Hua
    Shu, Gequn
    ENERGY CONVERSION AND MANAGEMENT, 2023, 294
  • [25] Pumped thermal energy storage and bottoming system part A: Concept and model
    Abarr, Miles
    Geels, Brendan
    Hertzberg, Jean
    Montoya, Lupita D.
    ENERGY, 2017, 120 : 320 - 331
  • [26] Comprehensive energy, exergy, and economic analysis of the scenario of supplementing pumped thermal energy storage (PTES) with a concentrated photovoltaic thermal system
    Kursun, Burak
    Okten, Korhan
    ENERGY CONVERSION AND MANAGEMENT, 2022, 260
  • [27] Thermodynamic Analysis of a Cascaded Latent Heat Store in a Pumped Thermal Electricity Storage System
    Zhao, Yao
    Markides, Christos N.
    Zhao, Changying
    PROCEEDINGS OF THE ISES EUROSUN 2020 CONFERENCE - 13TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY, 2020, : 706 - 716
  • [28] Optimization of a Pumped Thermal Energy Storage System Operating for Revenue Maximization
    Perez, Matthew
    Fan, Rui
    2021 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC), 2021,
  • [29] Thermodynamic analysis of pump thermal energy storage system with different working fluid coupled biomass power plant
    Wang, Furui
    He, Qing
    ENERGY, 2025, 318
  • [30] Thermodynamic and exergy analysis of a combined pumped hydro and compressed air energy storage system
    Mozayeni, Hamidreza
    Wang, Xiaolin
    Negnevitsky, Michael
    SUSTAINABLE CITIES AND SOCIETY, 2019, 48