Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods

被引:6
作者
Li, Yuanmao [1 ]
Liu, Guixiong [1 ]
Deng, Wei [1 ]
Li, Zuyu [2 ,3 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Univ Petrochem Technol, Sch Automat, Maoming 525000, Peoples R China
[3] Univ Technol Sydney, Sch Mech & Mechatron Engn, Sydney, NSW 2007, Australia
关键词
Parameter identification; Meta -heuristic methods; Electrochemical model; Lithium -ion battery; LEARNING-BASED OPTIMIZATION; SENSITIVITY-ANALYSIS; GLOBAL OPTIMIZATION; ALGORITHM; SEARCH; STATE; PHYSICS; HEALTH; CHARGE;
D O I
10.1016/j.apenergy.2024.123437
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The accurate determination of electrochemical parameters in lithium-ion batteries is crucial for assessing battery health. This study conducted a comparative investigation utilizing 78 popular meta-heuristic algorithms for parameter identification in simulations. In the electrochemical identification framework proposed herein, the pseudo-two-dimensional model of a lithium-ion battery was solved using the finite element method, and the electrochemical parameters were identified using meta-heuristic algorithms in a one-step strategy. Parameter identification was conducted under high-rate discharge/charge conditions with a loading current of 5C. The discussion encompassed the accuracy, convergence speed, and robustness of the 78 different meta-heuristic algorithms. Notably, the teaching learning-based optimization algorithm exhibited the highest accuracy, albeit with a moderate computational burden. With the exception of the search and rescue optimization algorithm, other algorithms with mean absolute percentage errors of less than 15% demonstrated relatively high robustness. Furthermore, a piecewise C-rates working condition was employed to validate the previous conclusions. Ultimately, this study proposed a modified teaching learning-based optimization algorithm to enhance the precision and computational efficiency of electrochemical parameter identification. This comparative analysis contributed novel insights into electrochemical parameter identification methods employing meta-heuristic algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An Electrochemical-Thermal Coupling Model Based on Two-Factor Parameter Modification for Lithium-Ion Battery
    Chen, Lin
    Zhao, Mingsi
    He, Manping
    Chen, Deqian
    Ding, Yunhui
    Pan, Haihong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2025, 22 (01)
  • [32] Equivalent Model and Parameter Identification of Lithium-Ion Battery
    Li, Rui
    Yu, Jialing
    Li, Jingnan
    Chen, Fuguang
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 29 - 39
  • [33] An automatic identification method of thermal physical parameter for lithium-ion batteries suffering from thermal runaway
    Feng, Xuning
    Wong, Shaw Kang
    Chen, Tianyu
    Ouyang, Minggao
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [34] A Simplified Fractional Order Modeling and Parameter Identification for Lithium-Ion Batteries
    Liu, Zheng
    Qiu, Yuan
    Feng, Jin
    Chen, Shaohang
    Yang, Chunshan
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [35] Fractional-order modeling and parameter identification for lithium-ion batteries
    Wang, Baojin
    Li, Shengbo Eben
    Peng, Huei
    Liu, Zhiyuan
    JOURNAL OF POWER SOURCES, 2015, 293 : 151 - 161
  • [36] An on-line electrochemical parameter estimation study of lithium-ion batteries using Neural Networks
    Jokar, Ali
    Rajabloo, Barzin
    Desilets, Martin
    Lacroix, Marcel
    LI-ION BATTERIES, 2017, 75 (20): : 73 - 87
  • [37] Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium-Ion Batteries: A Review
    Ding, Shicong
    Li, Yiding
    Dai, Haifeng
    Wang, Li
    He, Xiangming
    ADVANCED ENERGY MATERIALS, 2023, 13 (39)
  • [38] Electrochemical model based charge optimization for lithium-ion batteries
    Pramanik, Sourav
    Anwar, Sohel
    JOURNAL OF POWER SOURCES, 2016, 313 : 164 - 177
  • [39] A Review of SOC Estimation Methods for Lithium-Ion Batteries Based on Electrochemical Model
    Wu L.
    Pang H.
    Jin J.
    Geng Y.
    Liu K.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (07): : 1703 - 1725
  • [40] Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method
    Rahman, Md Ashiqur
    Anwar, Sohel
    Izadian, Afshin
    JOURNAL OF POWER SOURCES, 2016, 307 : 86 - 97