Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods

被引:6
|
作者
Li, Yuanmao [1 ]
Liu, Guixiong [1 ]
Deng, Wei [1 ]
Li, Zuyu [2 ,3 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Univ Petrochem Technol, Sch Automat, Maoming 525000, Peoples R China
[3] Univ Technol Sydney, Sch Mech & Mechatron Engn, Sydney, NSW 2007, Australia
关键词
Parameter identification; Meta -heuristic methods; Electrochemical model; Lithium -ion battery; LEARNING-BASED OPTIMIZATION; SENSITIVITY-ANALYSIS; GLOBAL OPTIMIZATION; ALGORITHM; SEARCH; STATE; PHYSICS; HEALTH; CHARGE;
D O I
10.1016/j.apenergy.2024.123437
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The accurate determination of electrochemical parameters in lithium-ion batteries is crucial for assessing battery health. This study conducted a comparative investigation utilizing 78 popular meta-heuristic algorithms for parameter identification in simulations. In the electrochemical identification framework proposed herein, the pseudo-two-dimensional model of a lithium-ion battery was solved using the finite element method, and the electrochemical parameters were identified using meta-heuristic algorithms in a one-step strategy. Parameter identification was conducted under high-rate discharge/charge conditions with a loading current of 5C. The discussion encompassed the accuracy, convergence speed, and robustness of the 78 different meta-heuristic algorithms. Notably, the teaching learning-based optimization algorithm exhibited the highest accuracy, albeit with a moderate computational burden. With the exception of the search and rescue optimization algorithm, other algorithms with mean absolute percentage errors of less than 15% demonstrated relatively high robustness. Furthermore, a piecewise C-rates working condition was employed to validate the previous conclusions. Ultimately, this study proposed a modified teaching learning-based optimization algorithm to enhance the precision and computational efficiency of electrochemical parameter identification. This comparative analysis contributed novel insights into electrochemical parameter identification methods employing meta-heuristic algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [2] Bayesian parameter identification in electrochemical model for lithium-ion batteries
    Kim, Seongyoon
    Kim, Sanghyun
    Choi, Yun Young
    Choi, Jung-Il
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [3] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [4] A comparative study of modeling and parameter identification for lithium-ion batteries in energy storage systems
    Fan, Yuan
    Zhang, Zepei
    Yang, Guozhi
    Pan, Tianhong
    Tian, Jiaqiang
    Li, Mince
    Liu, Xinghua
    Wang, Peng
    MEASUREMENT, 2025, 243
  • [5] Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence
    Li, Weihan
    Demir, Iskender
    Cao, Decheng
    Joest, Dominik
    Ringbeck, Florian
    Junker, Mark
    Sauer, Dirk Uwe
    ENERGY STORAGE MATERIALS, 2022, 44 : 557 - 570
  • [6] A Comparative Study of Sorting Methods for Lithium-ion batteries
    Li, Xiaoyu
    Wang, Tiansi
    Pei, Lei
    Zhu, Chunbo
    Xu, Bingliang
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [7] Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization
    Wang, Bing-Chuan
    He, Yan-Bo
    Liu, Jiao
    Luo, Biao
    ENERGY, 2024, 288
  • [8] Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization
    Yang, Xiao
    Chen, Long
    Xu, Xing
    Wang, Wei
    Xu, Qiling
    Lin, Yuzhen
    Zhou, Zhiguang
    ENERGIES, 2017, 10 (11):
  • [9] Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification
    Xu, Le
    Lin, Xianke
    Xie, Yi
    Hu, Xiaosong
    ENERGY STORAGE MATERIALS, 2022, 45 : 952 - 968
  • [10] Parameter Identification for Electrochemical Models of Lithium-Ion Batteries Using Bayesian Optimization
    Pi, Jianzong
    da Silva, Samuel Filgueira
    Ozkan, Mehmet Fatih
    Gupta, Abhishek
    Canova, Marcello
    IFAC PAPERSONLINE, 2024, 58 (28): : 180 - 185