Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review

被引:0
|
作者
Han, Ryan [1 ,2 ,3 ]
Acosta, Julian N. [4 ,5 ]
Shakeri, Zahra [6 ]
Ioannidis, John P. A. [7 ,8 ]
Topol, Eric J. [9 ]
Rajpurkar, Pranav [1 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA USA
[3] Univ Calif Angeles, Caltech Med ScientistTraining Program, Los Angeles, CA USA
[4] Yale Sch Med, Dept Neurol, New Haven, CT USA
[5] Rad AI, San Francisco, CA USA
[6] Univ Toronto, Inst Hlth Policy Management & Evaluat, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[7] Stanford Univ, Stanford Prevent Res Ctr, Dept Med, Stanford, CA USA
[8] Stanford Univ, Meta Res Innovat Ctr Stanford, Stanford, CA USA
[9] Scripps Res, Scripps Res Translat Inst, La Jolla, CA 92037 USA
来源
LANCET DIGITAL HEALTH | 2024年 / 6卷 / 05期
关键词
MULTICENTER; ALGORITHM; HEALTH; CARE;
D O I
暂无
中图分类号
R-058 [];
学科分类号
摘要
This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.
引用
收藏
页码:e367 / e373
页数:7
相关论文
共 50 条
  • [1] Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review
    Han R.
    Acosta J.N.
    Shakeri Z.
    Ioannidis J.P.A.
    Topol E.J.
    Rajpurkar P.
    The Lancet Digital Health, 2024, 6 (05): : e367 - e373
  • [2] Randomized Controlled Trials of Artificial Intelligence in Clinical Practice: Systematic Review
    Lam, Thomas Y. T.
    Cheung, Max F. K.
    Munro, Yasmin L.
    Lim, Kong Meng
    Shung, Dennis
    Sung, Joseph J. Y.
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (08)
  • [3] Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review
    Lu, Xiaoran
    Yang, Chen
    Liang, Lu
    Hu, Guanyu
    Zhong, Ziyi
    Jiang, Zihao
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024,
  • [4] Quality of reporting of randomised controlled trials of artificial intelligence in healthcare: a systematic review
    Shahzad, Rida
    Ayub, Bushra
    Siddiqui, M. A. Rehman
    BMJ OPEN, 2022, 12 (09):
  • [5] The use of Artificial Intelligence Algorithms in drug development and clinical trials: A scoping review
    Pontes, Camila de Brito
    Netto, Antonio Valerio
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 195
  • [6] Randomised controlled trials in hand surgery: a scoping review
    Heikkinen, Juuso
    Das De, Soumen
    Jokihaara, Jarkko
    Jaatinen, Kati
    Buchbinder, Rachelle
    Karjalainen, Teemu
    BMJ OPEN, 2022, 12 (10):
  • [7] Finding and evaluating randomised controlled trials in nursing conducted by Spanish research teams: A scoping review
    Medina-Aedo, Melixa
    Torralba-Martinez, Elena
    Segura-Carrillo, Cristian
    Buitrago-Garcia, Diana
    Sola, Ivan
    Pardo-Hernandez, Hector
    Bonfill, Xavier
    HEALTH INFORMATION AND LIBRARIES JOURNAL, 2022, 39 (04): : 312 - 322
  • [8] Artificial intelligence tools for optimising recruitment and retention in clinical trials: a scoping review protocol
    Lu, Xiaoran
    Chen, Mingan
    Lu, Zhuolin
    Shi, Xiaoting
    Liang, Lu
    BMJ OPEN, 2024, 14 (03):
  • [9] Artificial intelligence in the practice of forensic medicine: a scoping review
    Tournois, Laurent
    Trousset, Victor
    Hatsch, Didier
    Delabarde, Tania
    Ludes, Bertrand
    Lefevre, Thomas
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2024, 138 (03) : 1023 - 1037
  • [10] Artificial intelligence in the practice of forensic medicine: a scoping review
    Laurent Tournois
    Victor Trousset
    Didier Hatsch
    Tania Delabarde
    Bertrand Ludes
    Thomas Lefèvre
    International Journal of Legal Medicine, 2024, 138 : 1023 - 1037