Weak Harnack inequality for doubly non-linear equations of slow diffusion type

被引:1
|
作者
Baeuerlein, Fabian [1 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Doubly non-linear equations; Super-solutions; Weak Harnack inequality; Expansion of positivity; WAVE APPROXIMATION; SUPERSOLUTIONS; MINIMIZERS; REGULARITY; BEHAVIOR;
D O I
10.1016/j.jmaa.2024.128541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-negative weak super-solutions u : Omega(T) -> R->= 0 to the doubly nonlinear equation partial derivative(t) (vertical bar u vertical bar(q-1)u) - divA( x, t, u, Du) = 0 in Omega(T) = Omega x (0, T], where Omega is an bounded open set in R-N for N >= 2, T > 0 and q is a non-negative parameter. Furthermore, the vector field Asatisfies standard p-growth assumptions for some p > 1. The main novelty of this paper is that we establish the weak Harnack inequality in the entire slow diffusion regime p - q - 1 > 0. Additionally, we only require that the weak super-solution uis located in the function space C-loc(0) [0, T]; L-loc(q+1) loc (Omega) boolean AND n L-loc(p) (0, T; W-loc(1,p) (Omega)). (c) 2024 The Author. Published by Elsevier Inc.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] PARTIAL LEGENDRE TRANSFORMS OF NON-LINEAR EQUATIONS
    Guan, Pengfei
    Phong, D. H.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3831 - 3842
  • [22] SUPERCONDUCTIVE AND INSULATING INCLUSIONS FOR LINEAR AND NON-LINEAR CONDUCTIVITY EQUATIONS
    Brander, Tommi
    Ilmavirta, Joonas
    Kar, Manas
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (01) : 91 - 123
  • [23] Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations
    Chen, Hua
    Li, Wei-Xi
    Xu, Chao-Jiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 320 - 339
  • [24] Optimal control for non-linear integrodifferential functional equations
    Jeong, JM
    Park, JY
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2003, 24 (01) : 45 - 56
  • [25] Llocr - Lloc∞ ESTIMATES AND EXPANSION OF POSITIVITY FOR A CLASS OF DOUBLY NON LINEAR SINGULAR PARABOLIC EQUATIONS
    Fornaro, Simona
    Sosio, Maria
    Vespri, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (04): : 737 - 760
  • [26] Fully non-linear degenerate elliptic equations in complex geometry
    Chu, Jianchun
    McCleerey, Nicholas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [27] Boundary estimates for non-negative solutions to non-linear parabolic equations
    Nystrom, Kaj
    Persson, Hakan
    Sande, Olow
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 847 - 879
  • [28] Non-classical symmetries and invariant solutions of non-linear Dirac equations
    Rocha, P. M. M.
    Khanna, F. C.
    Rocha Filho, T. M.
    Santana, A. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 26 (1-3) : 201 - 210
  • [29] Positive solutions of semi-linear elliptic problems via Krasnoselskii type theorems in cones and Harnack's inequality
    Precup, Radu
    Mathematical Analysis and Applications, 2006, 835 : 125 - 132
  • [30] C1,α-regularity for a class of degenerate/singular fully non-linear elliptic equations
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Lee, Se-Chan
    INTERFACES AND FREE BOUNDARIES, 2024, 26 (02) : 189 - 215