A novel abstractive summarization model based on topic-aware and contrastive learning

被引:0
|
作者
Tang, Huanling [1 ,3 ]
Li, Ruiquan [2 ]
Duan, Wenhao [2 ]
Dou, Quansheng [1 ,3 ]
Lu, Mingyu [4 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai 264005, Shandong, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai 264005, Shandong, Peoples R China
[3] Shandong Coll & Univ Future Intelligent Comp, Coinnovat Ctr, Yantai 264005, Shandong, Peoples R China
[4] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian 116026, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Abstractive summarization; Neural topic model; Contrastive learning; Seq2Seq model;
D O I
10.1007/s13042-024-02263-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of abstractive summarization models are designed based on the Sequence-to-Sequence(Seq2Seq) architecture. These models are able to capture syntactic and contextual information between words. However, Seq2Seq-based summarization models tend to overlook global semantic information. Moreover, there exist inconsistency between the objective function and evaluation metrics of this model. To address these limitations, a novel model named ASTCL is proposed in this paper. It integrates the neural topic model into the Seq2Seq framework innovatively, aiming to capture the text's global semantic information and guide the summary generation. Additionally, it incorporates contrastive learning techniques to mitigate the discrepancy between the objective loss and the evaluation metrics through scoring multiple candidate summaries. On CNN/DM XSum and NYT datasets, the experimental results demonstrate that the ASTCL model outperforms the other generic models in summarization task.
引用
收藏
页码:5563 / 5577
页数:15
相关论文
共 50 条
  • [31] Contrastive Learning-Based Sequential Recommendation Model
    Zhang, Yuan
    Nuo, Minghua
    Jia, Xiaoyu
    Wang, Yao
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT IV, NLPCC 2024, 2025, 15362 : 28 - 40
  • [32] CLG-Trans: Contrastive learning for code summarization via graph attention-based transformer
    Zeng, Jianwei
    He, Yutong
    Zhang, Tao
    Xu, Zhou
    Han, Qiang
    SCIENCE OF COMPUTER PROGRAMMING, 2023, 226
  • [33] A NOVEL MULTI-ATLAS FUSION MODEL BASED ON CONTRASTIVE LEARNING FOR FUNCTIONAL CONNECTIVITY GRAPH DIAGNOSIS
    Zhang, Jiayu
    Xu, Dexuan
    Lou, Yiwei
    Huang, Yu
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 2295 - 2299
  • [34] Deep Contrastive Learning-Based Model for ECG Biometrics
    Ammour, Nassim
    Jomaa, Rami M.
    Islam, Md Saiful
    Bazi, Yakoub
    Alhichri, Haikel
    Alajlan, Naif
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [35] Rationale Aware Contrastive Learning Based Approach to Classify and Summarize Crisis-Related Microblogs
    Thi Huyen Nguyen
    Rudra, Koustav
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1552 - 1562
  • [36] CGG: Category-aware global graph contrastive learning for session-based recommendation
    Gan, Mingxin
    Zhang, Xiongtao
    Liang, Yuxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [37] Cross-View Contrastive Learning for Knowledge-Aware Session-Based Recommendation
    Zhang, Xiaohui
    Ma, Huifang
    Yang, Fanyi
    Li, Zhixin
    Chang, Liang
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 60 - 73
  • [38] Diffusion-Model-Based Contrastive Learning for Human Activity Recognition
    Xiao, Chunjing
    Han, Yanhui
    Yang, Wei
    Hou, Yane
    Shi, Fangzhan
    Chetty, Kevin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33525 - 33536
  • [39] Contrastive Learning and Deep Fusion Recommendation Model Based on ID Features
    Li, Bing
    Wang, Xile
    Dong, Jiangtao
    Hou, Yuqi
    Yang, Biao
    IEEE ACCESS, 2024, 12 : 163001 - 163015
  • [40] Collaborative Contrastive Learning-Based Generative Model for Image Inpainting
    Du, Yongqiang
    Liu, Haoran
    Chen, Songnan
    IEEE ACCESS, 2022, 10 : 106641 - 106654