ERGODICITY OF THE UNDERDAMPED MEAN-FIELD LANGEVIN DYNAMICS

被引:1
|
作者
Kazeykina, Anna [1 ]
Ren, Zhenjie [2 ]
Tan, Xiaolu [3 ]
Yang, Junjian [4 ]
机构
[1] Univ Paris Saclay, Fac Sci Orsay, Dept Math, Paris, France
[2] PSL, Univ Paris Dauphine, CEREMADE, Paris, France
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Vienna Univ Technol, Fak Math & Geoinformat, FAM, Vienna, Austria
来源
ANNALS OF APPLIED PROBABILITY | 2024年 / 34卷 / 03期
关键词
Underdamped mean-field Langevin dynamics; ergodicity; coupling; GAN; EXPONENTIAL CONVERGENCE; MOLECULAR-DYNAMICS; KINETIC-EQUATIONS; CONTRACTION RATES; TIME-REVERSAL; HYPOCOERCIVITY; PROPAGATION; EQUILIBRIUM; COUPLINGS; BEHAVIOR;
D O I
10.1214/23-AAP2036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the long time behavior of an underdamped mean -field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide some numerical examples of the algorithm to train a generative adversarial network (GAN).
引用
收藏
页码:3181 / 3226
页数:46
相关论文
共 50 条
  • [31] Mean-field diffusive dynamics on weighted networks
    Baronchelli, Andrea
    Pastor-Satorras, Romualdo
    PHYSICAL REVIEW E, 2010, 82 (01)
  • [32] Opinion dynamics, stubbornness and mean-field games
    Bauso, Dario
    Pesenti, Raffaele
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3475 - 3480
  • [33] Stochastic Mean-Field Approach to Fluid Dynamics
    Simon Hochgerner
    Journal of Nonlinear Science, 2018, 28 : 725 - 737
  • [34] Dynamical mean-field theory and aging dynamics
    Altieri, Ada
    Biroli, Giulio
    Cammarota, Chiara
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
  • [35] Glassy mean-field dynamics of the backgammon model
    Franz, S
    Ritort, F
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) : 131 - 150
  • [36] A stochastic mean-field approach for nuclear dynamics
    Ayik, Sakir
    PHYSICS LETTERS B, 2008, 658 (04) : 174 - 179
  • [37] ON MEAN-FIELD GLASSY DYNAMICS OUT OF EQUILIBRIUM
    FRANZ, S
    MEZARD, M
    PHYSICA A, 1994, 210 (1-2): : 48 - 72
  • [38] Stochastic Mean-Field Approach to Fluid Dynamics
    Hochgerner, Simon
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) : 725 - 737
  • [39] Resonances and reactions from mean-field dynamics
    Stevenson, P. D.
    INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND RELATED TOPICS (NSRT15), 2016, 107
  • [40] Glauber Dynamics for the Mean-Field Potts Model
    P. Cuff
    J. Ding
    O. Louidor
    E. Lubetzky
    Y. Peres
    A. Sly
    Journal of Statistical Physics, 2012, 149 : 432 - 477