ERGODICITY OF THE UNDERDAMPED MEAN-FIELD LANGEVIN DYNAMICS

被引:1
|
作者
Kazeykina, Anna [1 ]
Ren, Zhenjie [2 ]
Tan, Xiaolu [3 ]
Yang, Junjian [4 ]
机构
[1] Univ Paris Saclay, Fac Sci Orsay, Dept Math, Paris, France
[2] PSL, Univ Paris Dauphine, CEREMADE, Paris, France
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Vienna Univ Technol, Fak Math & Geoinformat, FAM, Vienna, Austria
来源
ANNALS OF APPLIED PROBABILITY | 2024年 / 34卷 / 03期
关键词
Underdamped mean-field Langevin dynamics; ergodicity; coupling; GAN; EXPONENTIAL CONVERGENCE; MOLECULAR-DYNAMICS; KINETIC-EQUATIONS; CONTRACTION RATES; TIME-REVERSAL; HYPOCOERCIVITY; PROPAGATION; EQUILIBRIUM; COUPLINGS; BEHAVIOR;
D O I
10.1214/23-AAP2036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the long time behavior of an underdamped mean -field Langevin (MFL) equation, and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide some numerical examples of the algorithm to train a generative adversarial network (GAN).
引用
收藏
页码:3181 / 3226
页数:46
相关论文
共 50 条
  • [21] Dynamics of polymers: A mean-field theory
    Fredrickson, Glenn H.
    Orland, Henri
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (08):
  • [22] Mean-field behavior of cluster dynamics
    Persky, N
    BenAv, R
    Kanter, I
    Domany, E
    PHYSICAL REVIEW E, 1996, 54 (03): : 2351 - 2358
  • [23] Game on Random Environment, Mean-Field Langevin System, and Neural Networks
    Conforti, Giovanni
    Kazeykina, Anna
    Ren, Zhenjie
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (01) : 78 - 99
  • [24] Zeroth order phase transition induced by ergodicity breaking in a mean-field system
    Ji-Xuan Hou
    The European Physical Journal B, 2021, 94
  • [25] Zeroth order phase transition induced by ergodicity breaking in a mean-field system
    Hou, Ji-Xuan
    EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (01):
  • [26] Truncated Levy flights and weak ergodicity breaking in the Hamiltonian mean-field model
    Figueiredo, A.
    Rocha Filho, T. M.
    Amato, M. A.
    Oliveira, Z. T., Jr.
    Matsushita, R.
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [27] Partial mean-field model for neurotransmission dynamics
    Montefusco, Alberto
    Helfmann, Luzie
    Okunola, Toluwani
    Winkelmann, Stefanie
    Schuette, Christof
    MATHEMATICAL BIOSCIENCES, 2024, 369
  • [28] Mean-field games with logistic population dynamics
    Gomes, Diogo Aguiar
    Ribeiro, Ricardo de Lima
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2513 - 2518
  • [29] Saddles and dynamics in a solvable mean-field model
    Angelani, L
    Ruocco, G
    Zamponi, F
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18): : 8301 - 8306
  • [30] Mean-Field Dynamics for the Nelson Model with Fermions
    Leopold, Nikolai
    Petrat, Soeren
    ANNALES HENRI POINCARE, 2019, 20 (10): : 3471 - 3508