On the local limit theorems for linear sequences of lower psi-mixing Markov chains

被引:0
作者
Peligrad, Magda [1 ]
Sang, Hailin [2 ]
Zhang, Na [3 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
[3] Towson Univ, Dept Math, Towson, MD 21252 USA
基金
美国国家科学基金会;
关键词
Local limit theorem; Markov chains; Psi-mixing; SUMS;
D O I
10.1016/j.spl.2024.110108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we investigate the local limit theorem for partial sums of linear sequences of the form X (j) = Sigma(i is an element of Z) a (i) e (j - i) . Here (a(i)) (i is an element of Z) is a sequence of constants satisfying Sigma(i is an element of Z) a(i)(2) < infinity and (xi(i))(i is an element of Z) are functions of a stationary Markov chain with mean zero and finite second moment. The Markov chain is assumed to satisfy one-sided lower psi -mixing condition.
引用
收藏
页数:11
相关论文
共 22 条
  • [1] Billingsley Patrick, 1995, Probability and Measure, Vthird
  • [2] Bradley R.C., 2007, Introduction To Strong Mixing Conditions
  • [3] Every "lower psi-mixing" Markov chain is "interlaced rho-mixing"
    Bradley, RC
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (02) : 221 - 239
  • [4] Breiman L., 1992, Probability, DOI DOI 10.1137/1.9781611971286
  • [5] Invariance principles for linear processes with application to isotonic regression
    Dedecker, Jerome
    Merlevede, Florence
    Peligrad, Magda
    [J]. BERNOULLI, 2011, 17 (01) : 88 - 113
  • [6] A Local Limit Theorem for sums of independent random vectors
    Dolgopyat, Dmitry
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [7] A local limit theorem for linear random fields
    Fortune, Timothy
    Peligrad, Magda
    Sang, Hailin
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (5-6) : 696 - 710
  • [8] Gnedenko B.V., 1962, THEORY PROBABILITY
  • [9] A Nonconventional Local Limit Theorem
    Hafouta, Yeor
    Kifer, Yuri
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (04) : 1524 - 1553
  • [10] Ibragimov I. A., 1971, INDEPENDENT STATIONA